

P á g i n a 1 | 31

Campanha JurassicPwn: Setor Financeiro Alvo da
Persistência no Acesso Remoto de Script Kiddies

TLP: CLEAR

Pesquisa de Cibersegurança

P á g i n a 2 | 31

Acesse nossa comunidade no WhatsApp, clicando na imagem abaixo!

Acesse as análises produzidas pela ISH Tecnologia sobre Táticas,
Técnicas e Procedimentos (TTPs) de Threat Actors, malwares
emergentes, vulnerabilidades críticas e outros temas relevantes em
cibersegurança. Clique na imagem abaixo para conferir nosso blog.

https://chat.whatsapp.com/FWmZxOon3PI0WB5e5LPFtT
https://ish.com.br/boletins-de-seguranca/

P á g i n a 3 | 31

SUMÁRIO

Inteligência Estratégica - Contexto .. 6

Análise da Amostra winsvc.exe .. 8

Identificação da Origem do Projeto e Análise da Amostra .. 8

Análise da Amostra app.exe ... 12

Análise da Amostra agent.exe .. 14

Comandos Built-In do Agente Disponíveis ao Operador ... 17

Análise da Implementação dos Comandos .. 18

Conclusão .. 27

Mapeamento MITRE ATT&CK .. 28

Indicadores de Comprometimento ... 29

Referências .. 30

Autores ... 30

P á g i n a 4 | 31

LISTA DE TABELAS
Tabela 1 - SHA256 das Amostras ... 6

Tabela 2 - Características dos Atores Maliciosos ... 7

Tabela 3 - Configuração da Amostra .. 11

Tabela 4 - Lista de Comandos Built-in do agent.exe .. 17

Tabela 5 - Colunas do Output do Comando netstat .. 22

Tabela 6 - Mapeamento MITRE ATT&CK Identificado Durante Análise 28

Tabela 7 - Indicadores de Comprometimento do winsvc.exe ... 29

Tabela 8 - Indicadores de Comprometimento do app.exe .. 29

Tabela 9 - Indicadores de Comprometimento do agent.exe ... 29

P á g i n a 5 | 31

LISTA DE FIGURAS
Figura 1 - Função Main da Amostra Coletada pelo DFIR ... 8

Figura 2 - Função Main do Código Fonte do Projeto no Github ... 9

Figura 3 - Endereço IPv4 do Servidor RSSH .. 9

Figura 4 - Fingerprint do RSSH Server ... 10

Figura 5 - Preenchimento da Struct com informações do Fingerprint .. 10

Figura 6 - Preenchimento da Struct com flags e Endereço IPv4 do RSSH Server 11

Figura 7 - Informações de Compilação do app.exe .. 12

Figura 8 - Descompressão do app.exe ... 13

Figura 9 - Decodificação dos bytecodes Python ... 13

Figura 10 - Reverse Shell Decodificado .. 13

Figura 11 - Estabelecimento de Conexão e Coleta/Envio de Metadados 14

Figura 12 - Identificação do Uso da Implementação Manual do Algoritmo djb2 15

Figura 13 - Identificação do Envio do Payload Final dos Metadados da Vítima ao C&C 15

Figura 14 - Identificação de Envio de Payload Contendo a Identidade da Vítima 16

Figura 15 - Identificação da Rotina de Estabelecimento do Agente .. 16

Figura 16 - Identificação da Rotina de Implementação do Comando sysinfo 18

Figura 17 - Implementação do Comando sysinfo ... 20

Figura 18 - Identificação de Rotina dos Comandos tasklist e netstat ... 21

Figura 19 - Implementação da Execução de Comandos via _popen ... 21

Figura 20 - Implementação do Comando netstat .. 22

Figura 21 - Identificação das Rotinas dos Comandos powershell, get e recv 23

Figura 22 - Implementação do Comando powershell ... 23

Figura 23 - Implementação do Comando send ... 24

Figura 24 - Implementação do Comando recv .. 24

Figura 25 - Implementação do Comando cmd .. 25

Figura 26 - Identificação da Rotina do Comando shell ... 25

Figura 27 - Implementação do Comando shell ... 26

P á g i n a 6 | 31

INTELIGÊNCIA ESTRATÉGICA - CONTEXTO
 Em conjunto com a equipe de Resposta à Incidentes e Forense Digital (DFIR)

da ISH Tecnologia, analisamos três amostras utilizadas no mesmo incidente, com
o objetivo de permitir o acesso remoto aos sistemas infectados.

Esta campanha nós batizamos de JurassicPwn, por causa da particular
assinatura de identificação utilizada por uma das amostras, durante o processo de
envio de pacotes de informações do sistema infectado, ao servidor de Comando e
Controle pertencente a infraestrutura do adversário.

Este ator executou esta campanha contra uma vítima do setor financeiro,
tendo como aceso inicial a exploração de uma aplicação web publicamente
exposta, permitindo que o adversário tivesse um ponto de apoio para atividades de
pós-exploração.

Ao interromper o serviço do software de protenção a endpoint, o adversário
utilizou diversos métodos para realizar o acesso remoto dos sistemas, inclusive o
uso do AnyDesk, porém, o que chamou atenção foi a identificação de três artefatos
em seu arsenal, que tinham o mesmo objetivo, permitir que o ator tivesse acesso
remoto ao sistema infectado. São elas:

Nome da Amostra SHA256 Hash

agent.exe 2458633002d59600eb8a0b403f860cd90fe03dbe1699a
d03604d9b3b6a53f7a8

app.exe 6579f17d5f2c5c3a0f94a83ae499075974c277a172e8bf
a7b890369beb3f5ee8

winsvc.exe 4d23fc1a8466b40af0f12a7b2eec84842bbddc7dd8615
6e88bea23b5d4353a2c

Tabela 1 - SHA256 das Amostras

 Estas amostras foram utilizadas com o objetivo de obter acesso remoto ao
sistema infectado, após uma série de medidas de contenção, após a identificação
do incidente, e até o momento, elas permanecem desconhecidas em repositórios
de malware públicos.

P á g i n a 7 | 31

Após analisarmos estas amostras, fomos capazes de compreender que o ator
que executou a campanha JurassicPwn, é um ator com as seguintes
características:

Característica Descrição

Script Kiddie

O ator utiliza ferramentas amplamente conhecidas e Open
Source durante a campanha, permitindo que o ator tenha

uma vasta opção de construção de Arsenal. As ferramentas
que parecem ser customizadas, não contém nenhuma

técnica de ofuscação e evasão de defesas.

Oportunista

A campanha tem padrões de atores, que apenas aproveitam
a oportunidade de comprometer determinadas empresas,
sem parecer ter um objetivo profundo e focado na vítima.

Nível Baixo de
Sofisticação

O nível de sofisticação das Táticas, Técnicas,
Procedimentos e das Ferramentas são baixas, não tendo

nenhum tipo de sofisticação na implementação em técnicas
de evasão de defesas.

Tabela 2 - Características dos Atores Maliciosos

Esta campanha nos permite compreendermos que nenhuma empresa esta
livre de nenhum tipo de ator, mesmo daqueles que possuem um baixo nível
técnico. Se algum adversário oportunista identificar a possibilidade de explorar
determinado sistema, e comprometer a infraestrutura com o objetivo financeiro,
isso será feito, principalmente quando este ator possui uma vasta lista de opções
de ferramentas Open Source, para construir o seu arsenal. Portanto, salientamos
a importância de não submestimarmos nenhum tipo de adversário, mantendo
sempre a infraestrutura e seus sistemas seguros!

 A seguir, vamos analisar em detalhes três componentes do arsenal,
utilizados durante a execução da campanha JurassicPwn.

P á g i n a 8 | 31

ANÁLISE DA AMOSTRA WINSVC.EXE
Esta amostra trata-se de um projeto OpenSource de um Reverse-SSH Proxy

Shell, chamado Reverse SSH desenvolvido em Golang pelo NHAS.

Esse projeto permite que o adversário possa ter acesso ao sistema
infectado, por meio de um shell interativo com suporte a comandos compatíveis
para Unix (por meio do projeto winpty, dando ao adversário a capacidade de
comunicação com o servidor de Comando e Controle por meio do protocolo SSH,
tunelado via HTTP/HTTPS e TCP.

Este projeto também permite Redirecionamento de Tráfego (Traffic
Forwarding) via protocolo ICMP, TCP e UDP, com o objetivo realizar evasão de
regras de Firewall.

Este binário espera ser instalado como um serviço do Windows, identificado
como sysmgt.

IDENTIFICAÇÃO DA ORIGEM DO PROJETO E ANÁLISE DA

AMOSTRA
Ao analisarmos a amostra encontrada pelo DFIR durante o incidente, é

possível observarmos que a função main do Pseudocódigo abaixo é idêntica a main
do código fonte descrito no Github.

Abaixo, é possível observarmo o Pseudocódigo presente no Decompiler.

Figura 1 - Função Main da Amostra Coletada pelo DFIR

https://github.com/rprichard/winpty

P á g i n a 9 | 31

Abaixo podemos observar a versão do código fonte, e portanto, vemos que
se trata do mesmo código.

Figura 2 - Função Main do Código Fonte do Projeto no Github

Conforme podemos observar a primeira ação que a função main executa, é
uma configuração inicial. Esta configuração inicial trata-se do preenchimento de
uma Struct, que contém informações para o cliente do RSSH. Abaixo é possível
observarmos a struct:

 settings := &client.Settings{

 Fingerprint: fingerprint,

 ProxyAddr: proxy,

 Addr: destination,

 ProxyUseHostKerberos: useHostKerberos == "true",

 SNI: customSNI,

 VersionString: versionString,

 }

Uma das informações que são colocadas nesta Struct é o endereço IPv4 do
RSSH Server, identificado como 140.99.164.101 na porta TCP/443.

Figura 3 - Endereço IPv4 do Servidor RSSH

P á g i n a 10 | 31

Além disso, também é possível observarmos o Fingerprint do RSSH Server.

Figura 4 - Fingerprint do RSSH Server

Abaixo, é possível observar a struct que foi criada no IDA Pro para melhorar
a análise:

struct client_Settings

{

 struct go_string Addr;

 struct go_string Fingerprint;

 struct go_string ProxyAddr;

 struct go_string SNI;

 char ProxyUseHostKerberos;

 char _padding[7];

 struct go_string VersionString;

};

Abaixo, é possível observarmos o processo de preenchimento da Struct com
as informações deste agente.

Figura 5 - Preenchimento da Struct com informações do Fingerprint

P á g i n a 11 | 31

Figura 6 - Preenchimento da Struct com flags e Endereço IPv4 do RSSH Server

 Após analisar a rotina de preenchimento da Struct, é possível identificar a
configuração desta amostra.

Membro da Struct Valor
Endereço IPv4 140.99.164.101

Porta TCP 443
Fingerprint do RSSH Server 6564180b9c35eb7fa392ac0d29d6d30f2e1e0

3bd00b23f44dde30e6a8e2a8026
Endereço de Proxy 0

Uso do Kerberos Falso
SNI 0

Version String 0
Tabela 3 - Configuração da Amostra

 Além disso, também foi identificado que este binário possui agentes winpty
embutidos, para serem instalados durante a execução.

 O winpty é um projeto opensource que permite que o usuário possa executar a
console Unix em consoles Windows como Cmd, PowerShell e etc. Isso nos
demonstra que o adversário não tem habilidades Living of the Land,
particularmente no sistema operacional Windows, necessitando alterar o tipo de
console para Unix-like.

https://github.com/rprichard/winpty

P á g i n a 12 | 31

ANÁLISE DA AMOSTRA APP.EXE
Esta amostra foi desenvolvida em Python e compilada com o PyInstaller por

meio do Visual Studio 2022. Portanto, não se trata de um binário compilado para
Windows por meio de linguagens como C/C++ e etc. Neste caso, o binário se trata
de um conjunto de scripts em Python compilados para serem executados no
formato de binário PE para Windows.

Figura 7 - Informações de Compilação do app.exe

Portanto a análise desta amostra é diferente, necessitando realizar o
processo de descompressão e decodificação dos arquivo .pyc.

P á g i n a 13 | 31

Utilizando o framework de unpacking de binários compilados com o
PyInstaller, o pyinstxtractor-ng, foi possível realizar a extração de todos os scripts
em formatos de bytecode .pyc. Na imagem abaixo, é possível observarmos o
processo de extração, e de identificação do Entry-Point, especialmente o script
rev.pyc.

Figura 8 - Descompressão do app.exe

Como trata-se de um bytecode, é possível extrair o formato original do script
Python, por meio da ferramenta pycdc.

Figura 9 - Decodificação dos bytecodes Python

Abaixo, é possível observarmos que o binário trata-se de um clássico Reverse
Shell desenvolvido em Python, tendo como servidor de Comando e Controle o
mesmo endereço IPv4 140.99.164.101 na porta 8080/TCP.

Figura 10 - Reverse Shell Decodificado

P á g i n a 14 | 31

ANÁLISE DA AMOSTRA AGENT.EXE
Esta amostra trata-se de um agente de um framework de C&C, que dispõe

comandos built-in, tendo como endereço IPv4 do servidor C&C o 140.99.164.247
na porta 80/TCP.

Ao criar o Socket, a amostra tenta coletar informações do sistema infectado e
enviá-los para o servidor C&C. As informações coletadas, como podemos
observar na imagem abaixo são:

• O Nome do Dispositivo: por meio da WinAPI GetComputerNameA;
• O Nome do Usuário: por meio da WinAPI GetUserNameA;
• O PID do Processo Atual: por meio da WinAPI GetCurrentProcessID.

Figura 11 - Estabelecimento de Conexão e Coleta/Envio de Metadados

Ao coletar estas informações, a amostra formata os dados na seguinte forma:
nome_pc:nome_usr:pid.

P á g i n a 15 | 31

Ao formatar os dados coletados, a amostra realiza o Hashing destas
informações por meio da implementação manual do algoritmo djb2.

Figura 12 - Identificação do Uso da Implementação Manual do Algoritmo djb2

Por fim, a amostra realiza a última formatação dos dados coletados
inicialmente, e os envia para o servidor C&C. É interessante notar a presença da
string JurassicPwn2024, pois parece tratar-se de uma flag de campanha! Vale
lembrar que de maneira semelhante, ouve um programa de rádio da Jovem Pan
chamado Jurassic Pan, que foi ao ar em 2024.

Figura 13 - Identificação do Envio do Payload Final dos Metadados da Vítima ao C&C

P á g i n a 16 | 31

Também é enviado para o servidor C&C, um pacote contendo informações de
identidade da vítima, seguindo o formato: IDENT:username@pcname.

Figura 14 - Identificação de Envio de Payload Contendo a Identidade da Vítima

Após esta rotina inicial, a amostra inicia a rotina de recebimento de comando
do Operador e estabelecimento de um Shell estável, para realizar o parsing e
execução dos comandos disponíveis ao Operador, por esta amostra.

Figura 15 - Identificação da Rotina de Estabelecimento do Agente

P á g i n a 17 | 31

COMANDOS BUILT-IN DO AGENTE DISPONÍVEIS AO

OPERADOR
Esta amostra além de permitir que o adversário tenha acesso remoto ao

dispositivo infectado, também dispõe de 9 comandos embutidos, são eles:

Comando Built-In Descrição

sysinfo

Coleta informações do sistema, incluindo:
• Nome do Dispositivo
• Nome do Usuário
• Versão do Sistema Operacional
• Número de Processadores
• Arquitetura de Computadores

tasklist Imprime a lista de processos em execução no
sistema operacional.

netstat Exibe informações de conexões de rede do sistema
infectado.

powershell

Executa comandos por meio do PowerShell. Esta
feature permite que o amostra execute CmdLets
nativos do PowerShell.

get Exibe informações de arquivos, por meio da
implementação do fopen.

recv

Envia para o sistema infectado, o conteúdo de
determinado arquivo enviado pelo Operador.
Semelhante a um mecanismo de upload.

cmd Executa comandos por meio do cmd.exe.

shell
Inicia uma instância e envia para o Operador no
painel do C&C, um console do PowerShell do
sistema infectado.

Tabela 4 - Lista de Comandos Built-in do agent.exe

P á g i n a 18 | 31

ANÁLISE DA IMPLEMENTAÇÃO DOS COMANDOS
O comando sysinfo consiste na coleta de diversas informações do sistema,

conforme descrito na tabela anterior.

Figura 16 - Identificação da Rotina de Implementação do Comando sysinfo

Para implementar esta capacidade, a amostra implementa WinAPIs como:

• GetVersionExA: Esta Win API traz a estrutura OSVERSIONINFOA
preenchida com informações do Sistema Operacional.

BOOL GetVersionExA(

 [in, out] LPOSVERSIONINFOA lpVersionInformation

);

Abaixo é possível observarmos os membros desta estrutura, que nos
permite compreender o porque a API acima é utilizada para extrair determinadas
informações.

typedef struct _OSVERSIONINFOA {

 DWORD dwOSVersionInfoSize;

 DWORD dwMajorVersion;

 DWORD dwMinorVersion;

 DWORD dwBuildNumber;

 DWORD dwPlatformId;

 CHAR szCSDVersion[128];

} OSVERSIONINFOA, *POSVERSIONINFOA, *LPOSVERSIONINFOA;

• GetSystemInfo: O uso desta API também gera um output riquíssimo, para
que os adversários possam coletar informações importantes do sistema
infectado.

void GetSystemInfo(

 [out] LPSYSTEM_INFO lpSystemInfo

);

P á g i n a 19 | 31

Abaixo é possível observarmos a struct SYSTEM_INFO, utilizada pela
amostra para extrair algumas informações que serão enviadas para o Operador.

typedef struct _SYSTEM_INFO {

 union {

 DWORD dwOemId;

 struct {

 WORD wProcessorArchitecture;

 WORD wReserved;

 } DUMMYSTRUCTNAME;

 } DUMMYUNIONNAME;

 DWORD dwPageSize;

 LPVOID lpMinimumApplicationAddress;

 LPVOID lpMaximumApplicationAddress;

 DWORD_PTR dwActiveProcessorMask;

 DWORD dwNumberOfProcessors;

 DWORD dwProcessorType;

 DWORD dwAllocationGranularity;

 WORD wProcessorLevel;

 WORD wProcessorRevision;

} SYSTEM_INFO, *LPSYSTEM_INFO;

• GetComputerNameA: Com esta Win API, é possível que o adversário colete
informações referente ao nome do dispositivo infectado.

• GetUserNameA: Com esta WinAPI, o adversário coleta o nome do usuário
infectado pela amostra.

P á g i n a 20 | 31

Abaixo é possível observarmos como a amostra implementa estas Win Apis em
conjunto, com o objetivo de coletar informações e enviar para o servidor C&C do
Operador.

Figura 17 - Implementação do Comando sysinfo

P á g i n a 21 | 31

Abaixo podemos observar a execução de mais dois comandos built-in, o
tasklist e o netstat.

Figura 18 - Identificação de Rotina dos Comandos tasklist e netstat

 O comando tasklist executa o binário tasklist.exe por meio da Win API
_popen, que executa o comando via Pipe. Todos os comandos utilizam este
mesmo método.

Figura 19 - Implementação da Execução de Comandos via _popen

P á g i n a 22 | 31

Abaixo podemos observar a implementação do comando netstat, que
executa-o das seguintes formas netstat -ano, trazendo as seguintes informações,
enviando-as posteriormente:

Colunas do Output Descrição
Proto O protocolo de transporte utilizado (TCP ou UDP).

Local Address O endereço IPv4 local e o número da porta que sua
máquina está usando.

Foreign Address O endereço IPv4 remoto e a porta do destino.
State O estado da conexão (ex: LISTENING, ESTABLI

SHED, CLOSE_WAIT).
PID O identificador único do processo que abriu aquela

conexão.
Tabela 5 - Colunas do Output do Comando netstat

Figura 20 - Implementação do Comando netstat

P á g i n a 23 | 31

 A seguir é possível observar a sequência da implementação de três
comandos built-in. São eles:

• powershell;
• get;
• recv.

Figura 21 - Identificação das Rotinas dos Comandos powershell, get e recv

O comando powershell permite que o operador execute comando por meio do
PowerShell, tendo a possibilidade de executar CmdLet.

Figura 22 - Implementação do Comando powershell

P á g i n a 24 | 31

O comando get tem o objetivo ler arquivos, e enviar seu conteúdo para o
operador, via canal estabelecido na conexão com o servidor C&C. Para isto, eles
implementam as Win APIs fopen (com modo rb) e fread, para abrir o arquivo e ler
seu conteúdo, enviando-o posteriormente para o servidor C&C por meio do WinAPI
send.

Figura 23 - Implementação do Comando send

O comando recv é o oposto do comando get, sendo uma feature de Upload de
determinados arquivo do Operador para o sistema infectado. Para isso, a amostra
utiliza a API fopen com a flag wb, seguida da recv para receber os dados do canal
de C&C e escrever em um arquivo com a função fwrite.

Figura 24 - Implementação do Comando recv

P á g i n a 25 | 31

O comando built-in cmd é implementado para executar comandos via
cmd.exe, tendo a capacidade de ler o output e identificar quando determinado
comando não é reconhecido pelo sistema, para que o Operador possa
compreender que o comando executado não funcionou.

Figura 25 - Implementação do Comando cmd

Por fim, temos o comando built-in shell. Este comando permite que o adversário
tenha acesso a um console direto do sistema da vítima.

Figura 26 - Identificação da Rotina do Comando shell

P á g i n a 26 | 31

Abaixo, podemos observar a implementação do comando built-in shell.
Conforme é possível observarmos, este comando permite que o Operador tenha
acesso a um console interativo no sistema infectado, especificamente, um console
do PowerShell.

Para isso, a amostra cria um novo processo do powershell.exe, por meio da
Win API CreateProcessA.

Figura 27 - Implementação do Comando shell

P á g i n a 27 | 31

CONCLUSÃO
 Nesta pesquisa fomos capazes de observar que, embora o adversário tenha
sido classificado como um Script Kiddie com nível de sofisticação mínima, a
persistência de qualquer nível de adversário não deve ser subestimada. O uso de
múltiplas amostras, como o winsvc.exe (um Reverse-SSH Proxy Shell em Golang),
o app.exe (um Reverse Shell em Python) e o agent.exe (um PowerShell TCP Agent
Shell), demonstra uma tentativa clara de manter o acesso remoto por meio de
redundância de ferramentas, ao sofrer com ações de contenção. Mesmo utilizando
recursos de código aberto e ferramentas de baixo nível técnico e altamente
conhecidas, o ator foi capaz de realizar ações de coleta de informações do sistema
e tentativa de estabelecimento de persistência como um serviço do Windows.

A importância de se proteger contra adversários de todos os níveis reside no
fato de que o risco não é proporcional apenas à sofisticação técnica, mas também
à oportunidade. Atores de nível básico, como os Script Kiddies, utilizam
ferramentas prontas e métodos que, embora barulhentos, podem ser eficazes se
as defesas fundamentais não estiverem consolidadas. A dependência deste
atacante de projetos como o winpty para simular consoles Unix em sistemas
Windows evidencia sua falta de habilidades nativas de Living off the Land. No
entanto, permitir que tais ameaças prosperem em um ambiente corporativo cria
um ruído de segurança que pode mascarar invasões mais graves ou servir como
porta de entrada para vetores de ataque mais complexos.

Em suma, a resiliência cibernética da instituição depende da capacidade de
neutralizar tanto o oportunismo dos Script Kiddies quanto o planejamento cirúrgico
das APTs. O fato de o adversário ter incluído uma "flag" de campanha como
JurassicPwn2024 e utilizado comandos built-in para tarefas básicas de
reconhecimento, como sysinfo e netstat, e para acesso direto ao console via
powershell, serve como um lembrete de que o monitoramento rigoroso de binários
nativos amplamente utilizados por adversários, não pode ser negligenciado.
Ignorar ameaças de baixa sofisticação é abrir mão da base da pirâmide de
segurança, tornando o ambiente vulnerável a qualquer ator que possua o mínimo
de persistência e acesso a ferramentas públicas.

P á g i n a 28 | 31

MAPEAMENTO MITRE ATT&CK

Abaixo segue o mapeamento do MITRE ATT&CK, referente as implementações
observadas pelas amostras durante a análise.

Tactic Technique ID

Execution

Command and Scripting Interpreter:
PowerShell

T1059.001

Command and Scripting Interpreter:
Windows Command Shell

T1059.003

Persistence Create or Modify System Process: Windows
Service

T1543.003

Defense Evasion Obfuscated Files or Information: Software
Packing

T1027.002

Discovery

System Information Discovery T1082
System Owner/User Discovery T1033

Process Discovery T1057
System Network Connections Discovery T1049

Collection Data from Local System T1005

Command and
Control

Proxy T1090
Ingress Tool Transfer T1105

Non-Application Layer Protocol T1095
Application Layer Protocol: Web Protocols T1071.001

Tabela 6 - Mapeamento MITRE ATT&CK Identificado Durante Análise

P á g i n a 29 | 31

INDICADORES DE COMPROMETIMENTO

Aqui você encontrar os indicadores de comprometimento coletados,
referente as amostras coletadas pela equipe de DFIR da ISH Tecnologia e
analisadas pela equipe de pesquisa da ISH Tecnologia, Heimdall Security
Research.

Indicadores do winsvc.exe
md5 e2901e13029c66d1424c2a6ff2ac8f3c
sha1 7578760d41add9cb30c9dc1f8a9e590d6b43ae01

sha256 4d23fc1a8466b40af0f12a7b2eec84842bbddc7dd
86156e88bea23b5d4353a2c

Nome do Amostra winsvc.exe
Endereço IP 140.99.164.101

Serviço Implementado sysmgt
Tabela 7 - Indicadores de Comprometimento do winsvc.exe

Indicadores do app.exe
md5 aec022301509b95c11eca016b8cfcda7
sha1 1cbed5d8862825d1b934ccc7585b4201c7e420c3

sha256 6579f17d5f2c5c3a0f94a83ae499075974c277a17
2e8bfa7b890369beb3f5ee8

Nome da Amostra app.exe
Endereço IPv4 140.99.164.101

Tabela 8 - Indicadores de Comprometimento do app.exe

Indicadores do agent.exe
md5 2ebf015b43514fd6d3c4461b5139708c
sha1 2f83216c8b65f373441213401d9aa163df20e44f

sha256 2458633002d59600eb8a0b403f860cd90fe03dbe
1699ad03604d9b3b6a53f7a8

Nome da Amostra agent.exe
Endereço IPv4 140.99.164.247

Tabela 9 - Indicadores de Comprometimento do agent.exe

P á g i n a 30 | 31

REFERÊNCIAS

• Heimdall by ISH Tecnologia;
• Equipe de Resposta a Incidentes e Forense Digital by ISH Tecnologia;

• MITRE ATT&CK;
• Malware Behavior Catalog.

AUTORES

• Ícaro César – Malware Researcher

https://attack.mitre.org/
https://github.com/MBCProject/mbc-markdown

P á g i n a 31 | 31

